正态分布的推导笔记

本篇文章来源于知乎上一篇关于正态分布推导的文章,醍醐灌顶,因此记录下笔记

在这里插入图片描述

from Introduction To The Normal Distribution (Bell Curve), BySaul Mcleod, PhD, https://www.simplypsychology.org/normal-distribution.html

假设有误差概率密度函数 f ( t ) f(t) f(t),现在有 n n n 个独立观测的值 x 1 x_1 x1 x 2 x_2 x2 ⋯ \cdots x n x_n xn,假设真值为 μ \mu μ,那么误差为:

ε 1 = x 1 − μ ε 2 = x 2 − μ ⋮ ε n = x n − μ \begin{aligned} \varepsilon_{1} & =x_{1}-\mu \\ \varepsilon_{2} & =x_{2}-\mu \\ & \vdots \\ \varepsilon_{n} & =x_{n}-\mu \end{aligned} ε1ε2εn=x1μ=x2μ=xnμ

根据生活经验,这个误差 ε \varepsilon ε,在做大量的观测下,其大部分的数值应在 0 0 0 附近范围波动,且出现的频数较多。而误差大的观测值,相应的 ∣ ε ∣ |\varepsilon| ε 也应很大,出现的频数也应该较小。做极大似然函数:

L ( μ ) = ∏ i = 1 n f ( ε i ) = f ( x 1 − μ ) f ( x 2 − μ ) ⋯ f ( x n − μ ) \begin{aligned} L(\mu) & =\prod_{i=1}^{n} f\left(\varepsilon_{i}\right) \\ & =f\left(x_{1}-\mu\right) f\left(x_{2}-\mu\right) \cdots f\left(x_{n}-\mu\right) \end{aligned} L(μ)=i=1nf(εi)=f(x1μ)f(x2μ)f(xnμ)

L ( μ ) L(\mu) L(μ) 取自然对数:

ln ⁡ [ L ( μ ) ] = ln ⁡ [ ∏ i = 1 n f ( ε i ) ] = ln ⁡ [ f ( x 1 − μ ) f ( x 2 − μ ) ⋯ f ( x n − μ ) ] = ln ⁡ [ f ( x 1 − μ ) ] + ln ⁡ [ f ( x 2 − μ ) ] + ⋯ + ln ⁡ [ f ( x n − μ ) ] = ∑ i = 1 n ln ⁡ [ f ( x i − μ ) ] \begin{aligned} \ln [L(\mu)] & =\ln \left[\prod_{i=1}^{n} f\left(\varepsilon_{i}\right)\right] \\ & =\ln \left[f\left(x_{1}-\mu\right) f\left(x_{2}-\mu\right) \cdots f\left(x_{n}-\mu\right)\right] \\ & =\ln \left[f\left(x_{1}-\mu\right)\right]+\ln \left[f\left(x_{2}-\mu\right)\right]+\cdots+\ln \left[f\left(x_{n}-\mu\right)\right] \\ & =\sum_{i=1}^{n} \ln \left[f\left(x_{i}-\mu\right)\right] \end{aligned} ln[L(μ)]=ln[i=1nf(εi)]=ln[f(x1μ)f(x2μ)f(xnμ)]=ln[f(x1μ)]+ln[f(x2μ)]++ln[f(xnμ)]=i=1nln[f(xiμ)]

为了得到 ln ⁡ [ L ( μ ) ] \ln [L(\mu)] ln[L(μ)] 的最大值,对其 ln ⁡ [ L ( μ ) ] \ln [L(\mu)] ln[L(μ)] 求偏导并令其等于 0 0 0

∂ ln ⁡ [ L ( μ ) ] ∂ μ = ∂ ∑ i = 1 n ln ⁡ [ f ( x i − μ ) ] ∂ μ = − ∑ i = 1 n f ′ ( x i − μ ) f ( x i − μ ) = 0 \begin{aligned} \frac{\partial \ln [L(\mu)]}{\partial \mu} & =\frac{\partial \sum_{i=1}^{n} \ln \left[f\left(x_{i}-\mu\right)\right]}{\partial \mu} \\ & =-\sum_{i=1}^{n} \frac{f^{\prime}\left(x_{i}-\mu\right)}{f\left(x_{i}-\mu\right)} \\ & =0 \end{aligned} μln[L(μ)]=μi=1nln[f(xiμ)]=i=1nf(xiμ)f(xiμ)=0

g ( t ) = f ′ ( t ) f ( t ) g(t)=\frac{f^{\prime}(t)}{f(t)} g(t)=f(t)f(t),则上述式子变成:

∑ i = 1 n g ( x i − μ ) = 0 \sum_{i=1}^{n} g\left(x_{i}-\mu\right)=0 i=1ng(xiμ)=0

到了这一步后,精彩的部分就开始来了,这也是高斯的高明之处,他认为 μ \mu μ 的无偏估计应为 x ˉ \bar{x} xˉ,则原式子变为

∑ i = 1 n g ( x i − x ˉ ) = 0 \sum_{i=1}^{n} g\left(x_{i}-\bar{x}\right)=0 i=1ng(xixˉ)=0

其中,

x ˉ = 1 n ∑ i = 1 n x i \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} xˉ=n1i=1nxi

解上述方程,对每个 x i x_i xi 求偏导,比如对 x 1 x_1 x1 求偏导,可得如下方程:

∂ ∑ i = 1 n g ( x i − x ˉ ) ∂ x 1 = ∂ ∑ i = 1 n g ( x i − 1 n ∑ i = 1 n x i ) ∂ x 1 = g ′ ( x 1 − x ˉ ) ( 1 − 1 n ) + g ′ ( x 2 − x ˉ ) ( − 1 n ) + ⋯ + g ′ ( x n − x ˉ ) ( − 1 n ) = 0 \begin{aligned} \frac{\partial \sum_{i=1}^{n} g\left(x_{i}-\bar{x}\right)}{\partial x_{1}} & =\frac{\partial \sum_{i=1}^{n} g\left(x_{i}-\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)}{\partial x_{1}} \\ & =g^{\prime}\left(x_{1}-\bar{x}\right)\left(1-\frac{1}{n}\right)+g^{\prime}\left(x_{2}-\bar{x}\right)\left(-\frac{1}{n}\right)+\cdots+g^{\prime}\left(x_{n}-\bar{x}\right)\left(-\frac{1}{n}\right) \\ & =0 \end{aligned} x1i=1ng(xixˉ)=x1i=1ng(xin1i=1nxi)=g(x1xˉ)(1n1)+g(x2xˉ)(n1)++g(xnxˉ)(n1)=0

g ′ ( x i − x ˉ ) g^{\prime}\left(x_{i}-\bar{x}\right) g(xixˉ) 看做未知数,把上述 个齐次线性方程组写成矩阵方程 A x = 0 \boldsymbol{A x}=\mathbf{0} Ax=0 的形式:

( 1 − 1 n − 1 n ⋯ − 1 n − 1 n 1 − 1 n ⋯ − 1 n ⋮ ⋮ ⋮ ⋮ − 1 n − 1 n − 1 n 1 − 1 n ) ( g ′ ( x 1 − x ˉ ) g ′ ( x 2 − x ˉ ) ⋮ g ′ ( x n − x ˉ ) ) = ( 0 0 ⋮ 0 ) \left(\begin{array}{cccc} 1-\frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} \\ -\frac{1}{n} & 1-\frac{1}{n} & \cdots & -\frac{1}{n} \\ \vdots & \vdots & \vdots & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & -\frac{1}{n} & 1-\frac{1}{n} \end{array}\right)\left(\begin{array}{c} g^{\prime}\left(x_{1}-\bar{x}\right) \\ g^{\prime}\left(x_{2}-\bar{x}\right) \\ \vdots \\ g^{\prime}\left(x_{n}-\bar{x}\right) \end{array}\right)=\left(\begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \end{array}\right) 1n1n1n1n11n1n1n1n1n11n1 g(x1xˉ)g(x2xˉ)g(xnxˉ) = 000

对于上述方程组的系数矩阵 M \mathbf{M} M,将第 1 , 2 , 3 ⋯   , n 1,2,3 \cdots,n 1,2,3,n 行依次加到第 1 1 1 行,可得如下矩阵:

M = ( 1 − 1 n − 1 n ⋯ − 1 n − 1 n 1 − 1 n ⋯ − 1 n ⋮ ⋮ ⋮ ⋮ − 1 n − 1 n − 1 n 1 − 1 n ) → ( 0 0 ⋯ 0 − 1 n 1 − 1 n ⋯ − 1 n ⋮ ⋮ ⋮ ⋮ − 1 n − 1 n − 1 n 1 − 1 n ) \boldsymbol{M}=\left(\begin{array}{cccc} 1-\frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} \\ -\frac{1}{n} & 1-\frac{1}{n} & \cdots & -\frac{1}{n} \\ \vdots & \vdots & \vdots & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & -\frac{1}{n} & 1-\frac{1}{n} \end{array}\right) \rightarrow\left(\begin{array}{cccc} 0 & 0 & \cdots & 0 \\ -\frac{1}{n} & 1-\frac{1}{n} & \cdots & -\frac{1}{n} \\ \vdots & \vdots & \vdots & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & -\frac{1}{n} & 1-\frac{1}{n} \end{array}\right) M= 1n1n1n1n11n1n1n1n1n11n1 0n1n101n1n1n10n11n1

第一行全为0,那么 det ⁡ M = 0 \det{M}=0 detM=0,这只能说明方程组有无穷多解,具体还要算出 rank ⁡ ( M ) \operatorname{rank}(\boldsymbol{M}) rank(M)。最终,上述方程组的解可以写为

X = k ( g ′ ( x 1 − x ˉ ) g ′ ( x 2 − x ˉ ) ⋮ g ′ ( x n − x ˉ ) ) = k ( 1 1 ⋮ 1 ) \boldsymbol{X}=k\left(\begin{array}{c} g^{\prime}\left(x_{1}-\bar{x}\right) \\ g^{\prime}\left(x_{2}-\bar{x}\right) \\ \vdots \\ g^{\prime}\left(x_{n}-\bar{x}\right) \end{array}\right)=k\left(\begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \end{array}\right) X=k g(x1xˉ)g(x2xˉ)g(xnxˉ) =k 111

g ′ ( x 1 − x ˉ ) = g ′ ( x 2 − x ˉ ) = ⋯ = g ′ ( x n − x ˉ ) = k g^{\prime}\left(x_{1}-\bar{x}\right)=g^{\prime}\left(x_{2}-\bar{x}\right)=\cdots=g^{\prime}\left(x_{n}-\bar{x}\right)=k g(x1xˉ)=g(x2xˉ)==g(xnxˉ)=k,解微分方程,可得:

g ( t ) = k t + b g(t)=k t+b g(t)=kt+b

求解该微分方程:

∫ f ′ ( t ) f ( t ) d t = ∫ k t   d t ⇔ ∫ d [ f ( t ) ] f ( t ) = 1 2 k t 2 + c ⇔ ln ⁡ [ f ( t ) ] = 1 2 k t 2 + c ⇔ f ( t ) = K e 1 2 k t 2 \begin{aligned} \int \frac{f^{\prime}(t)}{f(t)} \mathrm{d} t=\int k t \mathrm{~d} t & \Leftrightarrow \int \frac{\mathrm{d}[f(t)]}{f(t)}=\frac{1}{2} k t^{2}+c \\ & \Leftrightarrow \ln [f(t)]=\frac{1}{2} k t^{2}+c \\ & \Leftrightarrow f(t)=K \mathrm{e}^{\frac{1}{2} k t^{2}} \end{aligned} f(t)f(t)dt=kt dtf(t)d[f(t)]=21kt2+cln[f(t)]=21kt2+cf(t)=Ke21kt2

同时, f ( t ) f(t) f(t) 为概率密度函数,那么其从 − ∞ -\infty ∞ \infty 的积分为 1 1 1(概率密度的正则性)

∫ − ∞ + ∞ f ( t ) d t = ∫ − ∞ + ∞ K e 1 2 k t 2   d t = K ∫ − ∞ + ∞ e − t 2 2 σ 2   d t = K 2 σ [ ∫ − ∞ + ∞ e − ( t 2 σ ) 2   d ( 1 2 σ t ) ] [ 2 σ ∫ − ∞ + ∞ e − ( s 2 σ ) 2   d ( 1 2 σ s ) ] = K 2 σ ∫ − ∞ + ∞ ∫ − ∞ + ∞ e − ( u 2 + v 2 ) d u   d v = K 2 σ ∫ 0 2 π d θ ∫ 0 + ∞ e − r 2 r   d r = K 2 σ π = 1 \begin{aligned} \int_{-\infty}^{+\infty} f(t) \mathrm{d} t & =\int_{-\infty}^{+\infty} K \mathrm{e}^{\frac{1}{2} k t^{2}} \mathrm{~d} t \\ & =K \int_{-\infty}^{+\infty} \mathrm{e}^{-\frac{t^{2}}{2 \sigma^{2}}} \mathrm{~d} t \\ & =K \sqrt{\sqrt{2} \sigma\left[\int_{-\infty}^{+\infty} \mathrm{e}^{-\left(\frac{t}{\sqrt{2} \sigma}\right)^{2}} \mathrm{~d}\left(\frac{1}{\sqrt{2} \sigma} t\right)\right]\left[\sqrt{2} \sigma \int_{-\infty}^{+\infty} \mathrm{e}^{-\left(\frac{s}{\sqrt{2} \sigma}\right)^{2}} \mathrm{~d}\left(\frac{1}{\sqrt{2} \sigma} s\right)\right]} \\ & =K \sqrt{2} \sigma \sqrt{\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{e}^{-\left(u^{2}+v^{2}\right)} \mathrm{d} u \mathrm{~d} v} \\ & =K \sqrt{2} \sigma \sqrt{\int_{0}^{2 \pi} \mathrm{d} \theta \int_{0}^{+\infty} \mathrm{e}^{-r^{2}} r \mathrm{~d} r} \\ & =K \sqrt{2} \sigma \sqrt{\pi} \\ & =1 \end{aligned} +f(t)dt=+Ke21kt2 dt=K+e2σ2t2 dt=K2 σ[+e(2 σt)2 d(2 σ1t)][2 σ+e(2 σs)2 d(2 σ1s)] =K2 σ++e(u2+v2)du dv =K2 σ02πdθ0+er2r dr =K2 σπ =1

最终求得概率密度函数:

f ( t ) = 1 2 π σ e − 1 2 ( t σ ) 2 f(t)=\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-\frac{1}{2}\left(\frac{t}{\sigma}\right)^{2}} f(t)=2π σ1e21(σt)2

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

No_one-_-2022

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值