一、设计要求
结合以下设计指标对系统进行设计:
(1)输入电压:相电压380V
(2)输出电压:DC200V
(3)输出功率:0.5kW
(4)输出电压静差低于3%,动态过程纹波小于5%(电阻性负载)
二、设计方案
整流电路是电力电子技术中及其重要的一部分,其核心功能是把交流电能转换为直流电能。整流电路一般由变压器、整流主电路和滤波器等组成,目的是能够在一定负载下,满足良好的静态和动态性能要求。本小节将按照以下方案对系统进行设计:
(1)根据对整流装置要求对主要元器件及滤波元件等进行参数设计及产品型号选择,搭建整流电路拓扑图。
(2)建立主系统及其附属子系统的数学模型,根据技术指标设计控制方案,按照电压、电流双闭环控制原则,设计电压调节器和电流调节器,编写控制算法,结合自动控制理论或者工程设计法设计调节器参数。
(3)搭建系统仿真模型,对开环控制和电压电流双闭环控制两种控制方式进行仿真,并对仿真结果进行分析。
(4)以STM32F429为微机控制平台,编写系统软件部分,完成后结合实验平台进行调试并分析实验结果。
三、设计内容
3.1 整流装置主要硬件结构
考虑输入为380V三相交流电,应当将输入的交流电经变压器降压,再经过三相全控桥式整流电路,将三相交流电变换为含有交流分量的直流电,后经滤波电路滤去交流谐波为阻性负载供电。
为了实现闭环控制,需要分别从负载端采集负载电流和负载电压作为反馈信号,因此硬件电路还应当包括电压采集器和电流采集器。其中电压传感器采集负载两端电压,电流传感器采集SCR整流电路输出的直流电流。传感器输出的电流量经调理电路变换为电压量,再由A/D转换成数字量反馈给控制器,经过相应控制算法处理后,控制信号通过D/A变换为电压量输出,经驱动电路处理后为SCR提供触发信号,从而实现SCR整流系统的闭环控制。
3.2 整流装置主电路设计
3.2.1 变压器设计
为满足输入AC380V时输出200V直流电压的要求,考虑:
为方便后续计算,取期望触发角α=30°,可得变压器二次侧相电压有效值U2=99V。由此可得变压器变比k= U1/U2=220V/99V=2.22。
然后考虑变压器一次/二次绕组连结方式。因本设计中变压器为降压变压器,故一次侧电压相对较高,二次侧电流相对较高。考虑Yd联结组可有效消除三次谐波,有利于整流装置平滑输出,减少负载侧电压纹波,因此选用Yd11联结组,该连结方式能够显著降低二次侧的高次谐波,平滑化电压波形,减小全控整流桥的工作负荷。
3.2.2 SCR整流电路及其触发装置的选取
传统的SCR触发电路由分立的SCR及其附属电路构成,结构复杂,不易调试,稳定性差。当更换元器件后,其参数就会发生变化,从而导致系统数学模型发生改变。为方便调试,采用MJYS-QKJL系列SCR智能控制模块,其将SCR整流电路与全数字移相触发电路集成于一体,输入0~10V直流控制信号可实现对SCR整流电路输出电压的平滑调节。
3.2.3 滤波器设计
SCR整流电路输出直流电压中含有高次纹波,为提高输出电压质量,需在整流环节后加滤波环节,以减小电流或电压脉动。电压型整流器多采用旁路电容滤波,这种方式对电压纹波有较好的抑制作用,但其会造成较大的电流畸变,并在交流侧产生较大的谐波电流。因此本设计中,考虑使用L型滤波器。
按照工程经验,设计L型滤波器时,一般需满足下式条件:
其中,T为电源电压的纹波周期。
由输出直流电压200V、输出功率0.5kW,可得负载R=U2/P=80Ω,故有:
取C=1500uF.
整流输出电压ud瞬时值为
其平均值为
电感电流交流分量平均值iL为
式中U2=99V,ω=100π rad/s,α=60°。其平均值为
则c=2.5-0.0343/L。
若电流连续,则应满足
,即
可得L>13.72mH,取L=20mH。
3.2.4 SCR整流电路结构分析与模型建立
考虑题目仅要求整流装置工作在纯电阻负载下,因此本小节只对带电阻负载的情况进行分析。根据整流输出电流id的连续情况,将其输出特性分为电流连续状态和电流断续状态两种情况。
当触发角α不大于60°时。相邻两个导通的SCR的触发脉冲间相差60°,一个周期内每个SCR导通120°,系统工作在电流连续状态。整流输出电压ud的瞬时值为
其平均值为
式中Ud为电流连续状态时ud的平均值。可知因余弦函数的存在,Ud与U2和α之间呈非线性关系。对非线性系统进行控制器设计较为困难,故考虑对其进行局部线性化。
在、处,将式(3-7)进行Taylor展开。忽略高次项可得
其中,系数K1、K2分别为
对式(3-8)进行Laplace变换,得到Ud与U2和α间的关系为
考虑在整流器动态工作过程中,可把SCR触发与整流装置一起视为纯滞后环节,其滞后效应由SCR的失控时间Ts引起。因触发角可能在任何时刻改变,故失控时间Ts为一随机值,最大可能失控时间Tsmax一般为两个相邻自然换相点之间的时间,具体取决于交流电源频率和SCR整流电路的类型:
m为周期内整流电压脉波数,f为交流电源频率。
在实际计算时采用平均失控时间为失控时间,即取1/2Tmax,也可按最严重情况考虑,即取Ts=Tmax。本设计中整流电路脉波数为m=6,即六步同步脉冲,所用交流电源频率50Hz。考虑采用平均失控时间,即:
忽略电源侧电压波动,即令ΔU2=0,则由式(3-10)和式(3-11)可得α与Ud之间关系为
将上式进行Laplace变换,得其传递函数为:
式中存在延迟环节,为方便后续分析,对其在零点进行Taylor展开,得
实际应用时,由于Ts远小于系统动态响应时间,根据工程设计法,当满足约束条件wc<1/3Ts时,可将传递函数降阶为一阶惯性环节,即:
至此,经过简化后的SCR整流装置传递函数可视为一阶惯性环节,从而能通过线性控制理论对其进行分析和设计。
3.2.5 滤波器结构分析与模型建立
L型滤波器结构简单,仅由电感和电容构成,易得复数域方程为
整理得负载为阻性时,L型滤波电路的传递函数为
3.2.6 采样器结构分析与模型建立
控制系统的精度依赖于给定环节和反馈环节的精度。 采样电路是反馈环节的重要组成部分,但由于被检测信号中存在纹波以及其他扰动信号,为降低其影响,应在采样器回路中设置一阶低通滤波环节。其时间常数根据需求选定,并根据系统性能设计放大系数,由此可得采样电路传递函数的形式为
结合对采样电路的设计,可得电压采样环节的传递函数为
其中α=0.1,Ka=1,Tou=Tous=0.002s。电流采样环节的传递函数为
其中β=0.005,=1,Toi=Tois=0.00195s。
3.3 电压电流双闭环控制器结构分析与模型建立
电压电流双闭环的结构图如下图所示,以电流环为内环,电压环为外环实现双闭环控制。为消除反馈控制器带来的相位滞后,在电压控制器(AVR)和电流控制器(ACR)之后都设置了滤波环节。
单独提取出电流闭环(内环)并对其进行化简,如下图所示。
化简后的电流环可视为单位负反馈系统。考虑传递函数中存在电流采样器和SCR整流装置两个高频小惯性环节,考虑按照工程设计法对其进行等效,合并为一个时间常数为它们时间常数之和的惯性环节。在合并前,先验证是否满足合并条件。
合并后的开环传递函数为
其中TΣi=Toi+Ts=0.00365s。
从对响应的稳态要求出发,期望稳态电流无静差,以得到理想的堵转特性,需要ACR包含一个积分环节,而电流环的控制对象中并不包含积分环节,因此这个积分环节应当包含在ACR内。再考虑动态性能,实际系统不允许电流在负载突变时有过大的超调,因此电流环应以跟随性能为主。因此,期望将其校正为典型Ⅰ型系统,即目标开环传递函数为
根据经验,当KITI=0.5时系统达到最佳整定比,此时TI=TΣi=0.00365s,则
反解出ACR的传递函数为
其中,L=20mH,C=1500uF,R=80Ω。
由式(3-23)可得校正后电流环的闭环传递函数为
易得校正后电流环的开环传递函数为:
分析电流环闭环子系统性能。根据开环传递函数,绘制根轨迹图:
易得极点s1=-1/Ti距离虚轴的距离远大于s2=0,因此极点对系统性能影响可以忽略。从而电流环闭环传递函数可降阶为一阶惯性环节,即
用近似处理后的闭环传递函数代替电流环传递函数,可得图3.5a所示电压环动态结构图,对其进行化简,如图3.5b所示。
考虑传递函数中存在电压采样器和电流环两个高频小惯性环节,考虑按照工程设计法对其进行等效,合并为一个时间常数为它们时间常数之和的惯性环节。在合并前,先验证是否满足合并条件,即验算
由上式可得两个高频小惯性环节满足合并条件。
由上,合并后的电压环开环传递函数为
式中TΣu=1*/KI*+Tou=0.009s。
为实现输出电压无静差,在负载作用点前需有一个积分环节,其应当包含在AVR中。因此开环传递函数应有两个积分环节,即期望校正电压环为典型Ⅱ型系统,对应开环传递函数为
其中Ku为比例系数,tu为超前时间系数。
根据振荡指标法,考虑
根据经验,取h=5,此时预期能够获得最佳的调节时间和适中的动态性能。
当h=5时,求得TU=TΣu=0.009s。则τU=hTU=0.045s,Ku-1481
反解出AVR传递函数为
其中,Ku-370,C=1500uF,R=80Ω。
四、调试结果分析及结论
4.1 SCR整流器开环SIMULINK仿真
根据3.2节内容,在Simulink中搭建了SCR整流系统在开环模式下的模型,如图**所示。
仿真系统配置如下:
- Three-Phase Source:三相电压源,有效值220V,相角分别为0°、-120°、-240°;
- Transformer:三相变压器,Yd11联结组,220V/99V,变比k=2.22;
- Universal Bridge:三相全控整流桥,保持默认设置;
- Synchronized 6-Pulse Generato:同步六脉冲触发器,为SCR提供触发脉冲,同步电压频率为50Hz,脉宽为10°,双触发;
- 电感L=20mH,电容C=1500uF,电阻R=80ohm;
改变α值,α=30°时,负载两端直流电压值为200V。为验证电源电压波动对整流系统响应的影响,于t=1.3s时将输入电压由380V增加为410V,观察负载两端直流电压Ud波形,如图XX所示。可以发现,负载侧可输出DC200V,但当输入电压波动时,因缺少反馈环节,负载侧直流电压会发生变化,无法维持在额定电压。
SCR整流桥输出电流Id如图所示,其最大电流可达56A,大幅超出系统允许范围,故需采取措施对电流进行限制。
放大Ud波形图,如XX所示。可看出负载电压存在较大的不规则纹波,尽管纹波大小位于指标范围内,但是为保证负载的稳定工作,仍需对该不规则纹波进行优化。
综上,开环模式下的整流系统响应性能为:
- 电压超调量:95%;电流超调量:2140%
- 电压调节时间(误差带±5%):0.097s;电流调节时间(误差带±5%):0.12s
- 输出电压静差:0%
- 输出电压纹波:±4.7%
4.2 SCR整流器双闭环SIMULINK仿真
根据3.3节内容,在Simulink中搭建了SCR整流系统在双闭环模式下的模型,如图所示。
仿真系统配置如下:
1. Three-Phase Source:三相电压源,有效值220V,相角分别为0°、-120°、-240°;
2. Transformer:三相变压器,Yd11联结组,220V/99V,变比k=2.22;
3. Universal Bridge:三相全控整流桥,保持默认设置;
4. Synchronized 6-Pulse Generato:同步六脉冲触发器,为SCR提供触发脉冲,同步电压频率为50Hz,脉宽为10°,双触发;
5. 根据3.3节内容设计电压调节器,其中积分环节1限幅设为-2~1.8,积分环节2限幅设为0~3,输出限幅设为0~2.5;
-
根据3.3节内容设计电流调节器,其中积分环节1限幅设为0~7.5,输出限幅设为0~7.5;
-
电感L=20mH,电容C=1500uF,电阻R=80ohm;
-
给定信号为阶跃信号,设定为t=0.2s由0变为200。
为验证仿真系统在输入电压发生波动时的控制效果。t=1.5s时,将ua、ub、uc三相交流电源电压增加至410V,当t=2.7s时,三相交流电源电压恢复380V,获得如下仿真结果:
负载两端电压Ud波形如图17~图18所示,与开环控制方式的SCR整流系统相比系统超调量很小,但调节时间更长。当输入电压发生波动时,输出电压能够迅速进行自动调整,快速回到额定的输出电压200V。
晶闸管整流桥输出电流Id如图19所示,其细节如图20所示。此时系统电流最大值为13A,在系统允许范围内,电流反馈对晶闸管整流桥输出电流Id起到明显的调节作用。
最后,测试负载发生突变时,负载电压和负载电流的波动情况。令负载在t=2.5s时突增50%,获得以下仿真结果:
观察负载电压波形,如图21-图22,可发现在负载突变后,负载电压能够迅速调整到额定的200V,最大超调2.5%,符合要求。
观察负载电流波形,如图23,可以发现负载突变后,控制系统对负载电流起到了良好的控制效果,电流没有出现较大的波动,过渡过程平稳。
综上,根据仿真结果,双闭环控制模式下的整流系统响应性能如下所示:
正常工作状态
- 负载电压超调量:0%
- 负载电压静差:0%
- 负载电压纹波:±0.25%
- 负载电压调节时间(5%误差带):1.07s
输入电压突变(±30V)时
- 负载电压超调量:2.1%
- 稳定后负载电压静差:0%
- 稳定后负载电压纹波:±0.25%
- 负载电压调节时间(5%误差带):0.02s
负载突变(±50%)时
- 负载电压超调量:2.5%
- 稳定后负载电压静差:0%
- 稳定后负载电压纹波:±0.25%
- 负载电压调节时间(5%误差带):0.09s
五、总结与结论
本课程设计融合了自动控制原理、线性控制理论、电力电子技术、电力拖动自动控制原理等多门主干课程的内容,围绕SCR整流装置的控制系统进行了一系列设计,得出以下结论:
1、根据系统指标要求,对系统主电路拓扑结构进行了设计,选定整流电路为三相桥式全控整流电路,根据其输出特性,选定滤波电路为L型滤波电路,负载为80Ω纯阻性负载,并建立了各元件的数学模型,确定了相关参数。
2、通过调节器的工程设计方法设计了电压电流双闭环反馈控制方式的调节器。根据在Matlab软件的Simulink仿真环境下,对系统进行仿真结果可知,设计的调节器满足系统需求。通过与开环控制方式下SCR整流装置的响应情况,验证了该方法在SCR整流系统调节器设计中的可行性,根据Matlab软件仿真和系统的调试结果可知,系统可稳定工作,输出电压波形良好,闭环系统对电源电压和负载的波动有较好的抑制作用,能在扰动作用后很快恢复稳定至额定电压。
在设计过程中,也遇到了以下问题:
- 通过工程设计法得出的AVR和ACR在系统中可能并不能够得出非常好的抗扰动性能,尤其是在输入电压波动后,有很大可能会引起系统振荡或直接变为不稳定状态。经过试验可发现,该类情况一般是由于调节器的积分常数Ki设置不正确导致的。在保证系统稳定的情况下,对Ki进行微调,通常能够优化调节器性能。
- 滤波器中的电容、电感选型和参数可能会对采样环节,尤其是电流环的反馈控制环节造成非常大的影响。在设计电容器参数时,不能够以滤波效果好为目的盲目增大电容器的电容值,应当在一定范围内逐渐增大,做到滤波效果和控制系统稳态响应效果的平衡。
- 双闭环系统在调整控制参数时,应从内向外、由大至小。电流环和电压环的结构理论上是独立的,但是电流环的输入信号来源于电压环,因此在调整AVR时,其输出结果会连带影响到ACR的输出结果,从而加大了校正工作量。在调整AVR和ACR结构参数时,要避免过多的调整系统总体增益,应当更多的关注调节器中积分常量Ki和微分常量Kd。根据经验,Ki和Kd经常会对稳态响应起到非常大的影响。
- 工程设计法设计控制系统过程中,在建立各部分元件数学模型时,应当严格遵循近似条件,必要时,应通过二次计算或绘制系统根轨迹图判断某一结构能否被近似。错误的近似会影响整个系统的结构设计与参数计算。如在第三节中,滤波器不满足近似条件,不应当被近似成惯性环节,但部分文献却错误的将其近似成惯性环节,强行简化了系统结构,从而无法得出理想的结果。
六、参考文献
- 汤蕴缪.电机学[M].北京:机械工业出版社,2011:35-60.
- 胡寿松.自动控制原理[M].北京:科学出版社,2007:21-71.
- 徐德鸿.现代电力电子学[M].北京:机械工业出版社,2012.5
- 杨贵恒.电力电子电源技术及应用[M].北京:机械工业出版社,2017.7
- 阮毅.电力拖动自动控制系统[M].北京:机械工业出版社,2016.8