池化层输出数据的维度计算公式

池化层(Pooling Layer)在卷积神经网络中常用于下采样。池化操作有助于减少模型的参数量和计算量,并防止过拟合。池化层常见的类型包括最大池化(Max Pooling)和平均池化(Average Pooling)。计算池化层输出数据的维度时,通常考虑以下几个因素:

  1. 输入数据的维度(输入特征图的高度 H in H_{\text{in}} Hin 和宽度 W in W_{\text{in}} Win)。
  2. 池化窗口的大小(高度 k H k_H kH 和宽度 k W k_W kW)。
  3. 池化的步长(高度方向的步长 s H s_H sH 和宽度方向的步长 s W s_W sW)。
  4. 填充(padding),表示在输入的边缘填充的像素数(高度方向的填充 p H p_H pH 和宽度方向的填充 p W p_W pW)。

假设输入特征图的尺寸为 H in × W in H_{\text{in}} \times W_{\text{in}} H

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值