池化层(Pooling Layer)在卷积神经网络中常用于下采样。池化操作有助于减少模型的参数量和计算量,并防止过拟合。池化层常见的类型包括最大池化(Max Pooling)和平均池化(Average Pooling)。计算池化层输出数据的维度时,通常考虑以下几个因素:
- 输入数据的维度(输入特征图的高度 H in H_{\text{in}} Hin 和宽度 W in W_{\text{in}} Win)。
- 池化窗口的大小(高度 k H k_H kH 和宽度 k W k_W kW)。
- 池化的步长(高度方向的步长 s H s_H sH 和宽度方向的步长 s W s_W sW)。
- 填充(padding),表示在输入的边缘填充的像素数(高度方向的填充 p H p_H pH 和宽度方向的填充 p W p_W pW)。
假设输入特征图的尺寸为 H in × W in H_{\text{in}} \times W_{\text{in}} H