自动相关机制(Auto-Correlation Mechanism)(详细解释附带具体数据实现过程)

我们提出了一种自动相关机制(Auto-Correlation Mechanism),该机制在序列级别上进行依赖关系的发现和信息聚合。相比于之前的自注意力机制家族,我们的机制在计算效率和信息利用方面同时具有优势。

自动相关机制的详细解释

1. 依赖关系发现

自动相关机制通过分析时间序列数据的周期性来发现子序列之间的相似性。这种相似性使得我们可以识别出在不同时间段内具有相似模式的子序列。例如,在电力消耗预测中,每天的用电模式可能在每周、每月或每年的相同时间段内表现出相似的趋势。

2. 信息聚合

一旦发现了子序列之间的相似性,自动相关机制就可以聚合这些相似的子序列信息,从而在不增加计算复杂度的情况下增强信息的利用。这种方法有效地减少了冗余计算,提高了模型的效率。

自动相关机制的具体实现步骤

  1. 输入数据处理
    将输入的时间序列数据转换为适当的格式,以便进行依赖关系发现和信息聚合。

  2. 依赖关系发现

    • 通过滑动窗口技术和周期性分析方法(如傅里叶变换),识别时间序列中的周期性模式。
    • 计算不同子序列之间的相似度,构建相似子序列的集合。
    • 问题一:序列之间的相似度怎么计算(文章末端解答)
  3. 信息聚合

    • 对相似子序列进行聚合,将这些子序列的特征信息合并,从而生成新的序列表示。
    • 这种聚合操作可以采用加权平均、卷积操作等方法来实现,以保留关键特征并消除噪声。
    • 问题二:信息聚合的过程如何实现的(文章末端解答)
  4. 计算效率优化
    自动相关机制通过高效的算法实现,降低了计算复杂度。具体而言,自动相关机制的计算复杂度为 O ( L log ⁡ L ) O(L \log L) O(LlogL),相比传统自注意力机制的 O ( L 2 ) O(L^2) O(L2)大幅降低了计算成本。

具体数据示例

假设我们有一个每日销售数据的时间序列,长度为30天的数据,如下所示:

销售数据 = [ 100 , 110 , 105 , 115 , 120 , 130 , 125 , 140 , 135 , 145 , 150 , 160 , 155 , 165 , 170 , 180 , 175 , 185 , 190 , 200 , 195 , 205 , 210 , 220 , 215 , 225 , 230 , 240 , 235 , 245 ] \text{销售数据} = [100, 110, 105, 115, 120, 130, 125, 140, 135, 145, 150, 160, 155, 165, 170, 180, 175, 185, 190, 200, 195, 205, 210, 220, 215, 225, 230, 240, 235, 245] 销售数据=[100,110,105,115,120,130,125,140,135,145,150,160,155,165,170,180,175,185,190,200,195,205,210,220,215,225,230,240,235,245]

我们希望利用自动相关机制进行依赖关系发现和信息聚合,以提高预测未来10天销售数据的准确性。

实现步骤
  1. 输入数据处理
    将销售数据序列划分为窗口大小为7天的子序列:
    子序列1 = [ 100 , 110 , 105 , 115 , 120 , 130 , 125 ] 子序列2 = [ 140 , 135 , 145 , 150 , 160 , 155 , 165 ] 子序列3 = [ 170 , 180 , 175 , 185 , 190 , 200 , 195 ] 子序列4 = [ 205 , 210 , 220 , 215 , 225 , 230 , 240 ] 子序列5 = [ 235 , 245 ] \begin{align*} \text{子序列1} & = [100, 110, 105, 115, 120, 130, 125] \\ \text{子序列2} & = [140, 135, 145, 150, 160, 155, 165] \\ \text{子序列3} & = [170, 180, 175, 185, 190, 200, 195] \\ \text{子序列4} & = [205, 210, 220, 215, 225, 230, 240] \\ \text{子序列5} & = [235, 245] \end{align*} 子序列1子序列2子序列3子序列4子序列5=[100,110,105,115,120,130,125]=[140,135,145,150,160,155,165]=[170,180,175,185,190,200,195]=[205,210,220,215,225,230,240]=[235,245]

  2. 依赖关系发现
    计算这些子序列之间的相似度。例如,通过计算各子序列之间的欧几里得距离或余弦相似度,识别出具有高相似度的子序列。

  3. 信息聚合
    对相似的子序列进行聚合。例如,子序列2和子序列3具有相似的模式,可以通过加权平均的方法将其聚合:
    聚合子序列 = 子序列2 + 子序列3 2 = [ 155 , 157.5 , 160 , 167.5 , 175 , 177.5 , 180 ] \text{聚合子序列} = \frac{\text{子序列2} + \text{子序列3}}{2} = [155, 157.5, 160, 167.5, 175, 177.5, 180] 聚合子序列=2子序列2+子序列3=[155,157.5,160,167.5,175,177.5,180]

  4. 计算效率优化
    利用快速傅里叶变换(FFT)等高效算法,在 O ( L log ⁡ L ) O(L \log L) O(LlogL)的复杂度内完成相似度计算和聚合操作。

总结

通过自动相关机制,我们在序列级别上发现依赖关系并进行信息聚合,从而显著提高了计算效率和信息利用率。这种机制超越了传统自注意力机制,特别适用于复杂的长期时间序列预测任务。

问题一:序列之间的相似度怎么计算

计算不同子序列之间的相似度可以采用多种方法,常见的方法包括欧几里得距离、余弦相似度、动态时间规整(DTW)等。下面详细介绍这些方法及其实现步骤。

1. 欧几里得距离

欧几里得距离是最常见的相似度度量方法之一,用于计算两个向量之间的直线距离。公式如下:

d ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} d(x,y)=i=1n(xiyi)2

其中, x x x y y y是两个子序列, n n n是子序列的长度。

实现步骤

假设有两个子序列 x = [ x 1 , x 2 , . . . , x n ] x = [x_1, x_2, ..., x_n] x=[x1,x2,...,xn] y = [ y 1 , y 2 , . . . , y n ] y = [y_1, y_2, ..., y_n] y=[y1,y2,...,yn]

  1. 计算每个对应元素的差的平方。
  2. 将所有差的平方累加。
  3. 对累加值取平方根,得到欧几里得距离。
示例

假设我们有两个子序列 x = [ 1 , 2 , 3 ] x = [1, 2, 3] x=[1,2,3] y = [ 4 , 5 , 6 ] y = [4, 5, 6] y=[4,5,6],计算其欧几里得距离:

d ( x , y ) = ( 1 − 4 ) 2 + ( 2 − 5 ) 2 + ( 3 − 6 ) 2 = 9 + 9 + 9 = 27 = 5.2 d(x, y) = \sqrt{(1-4)^2 + (2-5)^2 + (3-6)^2} = \sqrt{9 + 9 + 9} = \sqrt{27} = 5.2 d(x,y)=(14)2+(25)2+(36)2 =9+9+9 =27 =5.2

2. 余弦相似度

余弦相似度用于测量两个向量之间的角度余弦值,通常用于衡量两个向量的方向相似性。公式如下:

cos ⁡ ( θ ) = x ⋅ y ∥ x ∥ ∥ y ∥ = ∑ i = 1 n x i y i ∑ i = 1 n x i 2 ∑ i = 1 n y i 2 \cos(\theta) = \frac{x \cdot y}{\|x\| \|y\|} = \frac{\sum_{i=1}^n x_i y_i}{\sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}} cos(θ)=x∥∥yxy=i=1nxi2 i=1nyi2 i=1nxiyi

实现步骤
  1. 计算两个向量的点积。
  2. 计算每个向量的模。
  3. 用点积除以两个向量模的乘积,得到余弦相似度。
示例

假设有两个子序列 x = [ 1 , 2 , 3 ] x = [1, 2, 3] x=[1,2,3] y = [ 4 , 5 , 6 ] y = [4, 5, 6] y=[4,5,6],计算其余弦相似度:

  1. 点积: 1 ∗ 4 + 2 ∗ 5 + 3 ∗ 6 = 4 + 10 + 18 = 32 1*4 + 2*5 + 3*6 = 4 + 10 + 18 = 32 14+25+36=4+10+18=32
  2. 向量模: 1 2 + 2 2 + 3 2 = 1 + 4 + 9 = 14 \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14} 12+22+32 =1+4+9 =14 4 2 + 5 2 + 6 2 = 16 + 25 + 36 = 77 \sqrt{4^2 + 5^2 + 6^2} = \sqrt{16 + 25 + 36} = \sqrt{77} 42+52+62 =16+25+36 =77
  3. 余弦相似度: 32 14 ⋅ 77 ≈ 0.974 \frac{32}{\sqrt{14} \cdot \sqrt{77}} \approx 0.974 14 77 320.974

3. 动态时间规整(DTW)

动态时间规整(DTW)是一种用于计算时间序列相似度的算法,允许非线性时间变形。DTW特别适用于时间序列长度不同或时间偏移的情况。

实现步骤
  1. 构建一个矩阵,其中矩阵的元素表示两个序列中每对点的距离。
  2. 通过动态规划找到一条最小化距离的路径,从矩阵左上角到右下角。
  3. 路径的代价即为两个序列的相似度。
示例

假设有两个时间序列 x = [ 1 , 2 , 3 ] x = [1, 2, 3] x=[1,2,3] y = [ 2 , 2 , 4 ] y = [2, 2, 4] y=[2,2,4]

  1. 构建距离矩阵:

2 2 4 1 1 1 9 2 0 0 4 3 1 1 1 \begin{array}{cccc} & 2 & 2 & 4 \\ 1 & 1 & 1 & 9 \\ 2 & 0 & 0 & 4 \\ 3 & 1 & 1 & 1 \\ \end{array} 123210121014941

  1. 通过动态规划找到最小化距离的路径(例如对角线路径)。
  2. 路径代价即为DTW距离。

小结

通过计算子序列之间的相似度,可以识别出具有相似模式的子序列集合。具体方法包括欧几里得距离、余弦相似度和动态时间规整(DTW),每种方法都有其独特的优点和应用场景。在实际应用中,可以根据数据特点和需求选择合适的相似度度量方法来实现依赖关系的发现和信息聚合。

问题二:信息聚合的过程如何实现的

信息聚合是在时间序列分析中,将多个相似子序列的信息合并,以获得更准确和可靠的特征表示的过程。这可以通过多种方法实现,如加权平均、卷积操作或其他统计方法。下面将详细解释信息聚合的过程,并通过具体的数据示例来说明。

信息聚合的步骤

  1. 识别相似子序列:首先,通过相似度计算方法(如欧几里得距离、余弦相似度或动态时间规整)识别出一组相似的子序列。
  2. 计算加权系数:根据相似度计算结果,确定每个子序列的加权系数。通常,相似度越高的子序列权重越大。
  3. 加权平均:将相似的子序列按加权系数进行加权平均,得到聚合后的序列表示。

具体数据示例

假设我们有一个每日销售数据的时间序列,长度为10天的数据,如下所示:

销售数据 = [ 100 , 105 , 102 , 110 , 108 , 107 , 112 , 115 , 120 , 118 ] \text{销售数据} = [100, 105, 102, 110, 108, 107, 112, 115, 120, 118] 销售数据=[100,105,102,110,108,107,112,115,120,118]

我们要预测未来几天的销售情况。首先,我们将数据分割成若干个子序列:

  1. 子序列1 [ 100 , 105 , 102 ] [100, 105, 102] [100,105,102]
  2. 子序列2 [ 105 , 102 , 110 ] [105, 102, 110] [105,102,110]
  3. 子序列3 [ 102 , 110 , 108 ] [102, 110, 108] [102,110,108]
  4. 子序列4 [ 110 , 108 , 107 ] [110, 108, 107] [110,108,107]
  5. 子序列5 [ 108 , 107 , 112 ] [108, 107, 112] [108,107,112]

假设我们要聚合子序列2、子序列3和子序列4,因为它们在某种度量下被识别为相似子序列。

步骤1:相似度计算

假设我们使用欧几里得距离计算相似度,结果如下:

  • 子序列2和子序列3的相似度: d = ( 105 − 102 ) 2 + ( 102 − 110 ) 2 + ( 110 − 108 ) 2 = 9 + 64 + 4 = 77 = 8.77 d = \sqrt{(105-102)^2 + (102-110)^2 + (110-108)^2} = \sqrt{9 + 64 + 4} = \sqrt{77} = 8.77 d=(105102)2+(102110)2+(110108)2 =9+64+4 =77 =8.77
  • 子序列2和子序列4的相似度: d = ( 105 − 110 ) 2 + ( 102 − 108 ) 2 + ( 110 − 107 ) 2 = 25 + 36 + 9 = 70 = 8.37 d = \sqrt{(105-110)^2 + (102-108)^2 + (110-107)^2} = \sqrt{25 + 36 + 9} = \sqrt{70} = 8.37 d=(105110)2+(102108)2+(110107)2 =25+36+9 =70 =8.37
  • 子序列3和子序列4的相似度: d = ( 102 − 110 ) 2 + ( 110 − 108 ) 2 + ( 108 − 107 ) 2 = 64 + 4 + 1 = 69 = 8.31 d = \sqrt{(102-110)^2 + (110-108)^2 + (108-107)^2} = \sqrt{64 + 4 + 1} = \sqrt{69} = 8.31 d=(102110)2+(110108)2+(108107)2 =64+4+1 =69 =8.31
步骤2:计算加权系数

我们可以根据相似度的倒数来计算加权系数:

  • 子序列2和子序列3的权重: w 23 = 1 d 23 = 1 8.77 = 0.114 w_{23} = \frac{1}{d_{23}} = \frac{1}{8.77} = 0.114 w23=d231=8.771=0.114
  • 子序列2和子序列4的权重: w 24 = 1 d 24 = 1 8.37 = 0.120 w_{24} = \frac{1}{d_{24}} = \frac{1}{8.37} = 0.120 w24=d241=8.371=0.120
  • 子序列3和子序列4的权重: w 34 = 1 d 34 = 1 8.31 = 0.120 w_{34} = \frac{1}{d_{34}} = \frac{1}{8.31} = 0.120 w34=d341=8.311=0.120

归一化权重使得它们的总和为1:

  • 总权重: w t o t a l = w 23 + w 24 + w 34 = 0.114 + 0.120 + 0.120 = 0.354 w_{total} = w_{23} + w_{24} + w_{34} = 0.114 + 0.120 + 0.120 = 0.354 wtotal=w23+w24+w34=0.114+0.120+0.120=0.354
  • 归一化后的权重: w 23 ′ = 0.114 0.354 = 0.322 w'_{23} = \frac{0.114}{0.354} = 0.322 w23=0.3540.114=0.322
    w 24 ′ = 0.120 0.354 = 0.339 w'_{24} = \frac{0.120}{0.354} = 0.339 w24=0.3540.120=0.339
    w 34 ′ = 0.120 0.354 = 0.339 w'_{34} = \frac{0.120}{0.354} = 0.339 w34=0.3540.120=0.339
步骤3:加权平均

根据归一化后的权重,将相似的子序列进行加权平均:

聚合子序列 = 0.322 × 子序列2 + 0.339 × 子序列3 + 0.339 × 子序列4 \text{聚合子序列} = 0.322 \times \text{子序列2} + 0.339 \times \text{子序列3} + 0.339 \times \text{子序列4} 聚合子序列=0.322×子序列2+0.339×子序列3+0.339×子序列4

子序列2 = [ 105 , 102 , 110 ] \text{子序列2} = [105, 102, 110] 子序列2=[105,102,110]
子序列3 = [ 102 , 110 , 108 ] \text{子序列3} = [102, 110, 108] 子序列3=[102,110,108]
子序列4 = [ 110 , 108 , 107 ] \text{子序列4} = [110, 108, 107] 子序列4=[110,108,107]

计算:

聚合子序列 [ 0 ] = 0.322 × 105 + 0.339 × 102 + 0.339 × 110 = 33.81 + 34.58 + 37.29 = 105.68 \text{聚合子序列}[0] = 0.322 \times 105 + 0.339 \times 102 + 0.339 \times 110 = 33.81 + 34.58 + 37.29 = 105.68 聚合子序列[0]=0.322×105+0.339×102+0.339×110=33.81+34.58+37.29=105.68
聚合子序列 [ 1 ] = 0.322 × 102 + 0.339 × 110 + 0.339 × 108 = 32.84 + 37.29 + 36.61 = 106.74 \text{聚合子序列}[1] = 0.322 \times 102 + 0.339 \times 110 + 0.339 \times 108 = 32.84 + 37.29 + 36.61 = 106.74 聚合子序列[1]=0.322×102+0.339×110+0.339×108=32.84+37.29+36.61=106.74
聚合子序列 [ 2 ] = 0.322 × 110 + 0.339 × 108 + 0.339 × 107 = 35.42 + 36.61 + 36.29 = 108.32 \text{聚合子序列}[2] = 0.322 \times 110 + 0.339 \times 108 + 0.339 \times 107 = 35.42 + 36.61 + 36.29 = 108.32 聚合子序列[2]=0.322×110+0.339×108+0.339×107=35.42+36.61+36.29=108.32

最终的聚合子序列为:

聚合子序列 = [ 105.68 , 106.74 , 108.32 ] \text{聚合子序列} = [105.68, 106.74, 108.32] 聚合子序列=[105.68,106.74,108.32]

总结

通过上述步骤,我们完成了相似子序列的识别和信息聚合。这个过程利用了子序列的相似性,并通过加权平均的方式合并了相似的子序列,从而得到了一个更具代表性的序列表示。这种方法可以提高预测的准确性和可靠性,在时间序列预测中具有广泛的应用。

  • 12
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值