编码器的稀疏注意力块(ProbSparse Self-Attention Block)

编码器的稀疏注意力块(ProbSparse Self-Attention Block)详细解释

1. 概述

稀疏注意力块是Informer模型的核心组件之一,旨在高效处理长时间序列数据。它通过稀疏自注意力机制(ProbSparse Self-Attention)显著降低计算复杂度,同时保持较高的性能。

2. 主要组件

稀疏注意力块由以下几个主要部分组成:

  1. 多头稀疏注意力(Multi-head ProbSparse Attention)
  2. Add, LayerNorm, Dropout
  3. 位置前馈网络(Position-wise Feed-Forward Network, FFN)
  4. GELU 激活函数
  5. 重复机制
3. 多头稀疏注意力(Multi-head ProbSparse Attention)
  • 作用:稀疏注意力机制通过挑选重要的注意力头来减少计算量。

  • 具体步骤

    1. 线性变换:输入特征通过线性变换生成查询(Query)、键(Key)、和值(Value)矩阵。
    2. 计算注意力分数:通过点积计算查询和键的相似度,并通过Softmax归一化得到注意力权重。
    3. 选择重要的头:通过概率稀疏性方法,仅计算和保留重要的注意力头。
    4. 加权求和:用注意力权重加权和值(Value),得到注意力输出。
    5. 多头注意力:将多个注意力头的输出拼接在一起,并通过线性变换。
  • 计算复杂度:相比传统自注意力的 O ( N 2 ) O(N^2) O(N2</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值