概述
本项目指南旨在帮助初学者快速上手Windows平台下基于YOLOv5的安全帽检测。通过详细步骤,从安装Anaconda开始,到创建Python虚拟环境、克隆YOLOv5仓库、安装项目依赖,以及下载训练好的安全帽权重文件,本指南涵盖了项目设置的全过程。
最后,指南提供了如何运行安全帽检测的命令,使用户能够利用摄像头数据进行实时检测。整个过程简单直观,无需复杂配置即可实现对人员是否佩戴安全帽的检测,适合安全监控等领域的应用。
第一步:下载和安装Anaconda
访问Anaconda官网下载Anaconda。
选择适合Windows的安装程序,根据你的系统是32位还是64位下载相应版本。
下载后,双击安装程序开始安装。安装时选择“Add Anaconda to my PATH environment variable”的选项,方便后续操作。
第二步:进入anaconda创建Python虚拟环境
打开Anaconda Prompt,
执行以下命令创建一个新的虚拟环境(这里命名为yolov5),并指定Python版本为3.10:
conda create -n yolov5 python=3.10
创建完成后,激活这个虚拟环境:
conda activate yolov5
出现以上场景,即安装成功!
注意:之后的操作都需要在这个yolov5的虚拟环境下进行操作
若在安装环境中出现其他问题,或想要了解更多信息,可移步:python 虚拟环境部署(Anaconda)+jupyter跑起来
第三步:克隆YOLOv5仓库
方法一:直接官方github仓库下载
进入github:yolov5官方仓库
点击
下载到本地,之后解压到自己所属目录下,例如我的目录为:D:\yolov5
方法二:使用git克隆YOLOv5的GitHub仓库到本地:
访问Git官网下载页面:https://git-scm.com/download/win。
根据系统位数下载相应的安装程序,之后疯狂NEXT。
安装完成后,可以在命令行输入git --version
来验证安装是否成功,出现以下情况,即安装成功。
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
第四步:安装依赖
先一定确保在yolov5的环境下,在yolov5的项目目录下,之后运行命令行
若已经科学上网,则
pip install ultralytics
pip install -r requirements.txt
若还没科学上网,则
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
第五步:下载已经训练好的yolo安全帽权重文件
该权重文件已经是训练好的文件,包含三类:person、head、helmet
直接下载,之后放到项目目录下
链接:https://pan.baidu.com/s/1O5ViGBdjQ8rAD-QliMf3WA?pwd=5u0t
提取码:5u0t
第六步:进入anaconda prompt命令行运行
以下代码默认调用摄像头数据,使用的是CPU进行推理,所以速度很慢,若想要使用NVIDIA-gpu进行推理,可在配置依赖步骤,进行GPU适配cuda版本和pytorch-gpu版本,具体设置,可移步超详细GPU部署 (pytorch+tensorflow)
python detect.py --weights helmet_head.pt --source 0
等待ing
之后会出现结果
之后会出现窗口,显示框框、结果、以及置信度
退出,按ctrl+c即可。
也可以通过其他方式实现其他检测:
python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/LNwODJXcvt4' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
其他
该步骤可以覆盖所有yolov5场景,若想要实现口罩检测,只需要在第五步拿到.pt文件(训练得到),将其替换即可。