saver 保存读取

用tensorflow 保存变量

import tensorflow as tf
import numpy as np

# save to file
#remember to define the same dtype and shape when restore
W=tf.Variable([[1, 2, 3], [4, 5, 6]], dtype=tf.float32, name='Weights')  # 最好给个dtype
b=tf.Variable([[1, 2, 3]], dtype=tf.float32, name='biases')

init=tf.global_variables_initializer()
saver=tf.train.Saver()  # 用saver存储各种变量

with tf.Session() as sess:
    sess.run(init)
    save_path=saver.save(sess, 'D:/try/save.ckpt')
    # 保存之后会返回一个值,返回的值存在save_path中,restore时会换成saver.restore
    # 以ckpt的格式保存
    print('save to path:', save_path)

#restore variables
#redefine the same shape and same type for your variables
tf.reset_default_graph()
#保存和加载两次定义了W和b,用该语句清除默认图的堆栈,并设置全局图为默认图
W=tf.Variable(np.arange(6).reshape((2,3)),dtype=tf.float32,name='Weights')
b=tf.Variable(np.arange(3).reshape((1,3)),dtype=tf.float32,name='biases')


#not need init step
saver=tf.train.Saver()

with tf.Session() as sess:
    saver.restore(sess, 'D:/try/save.ckpt')
    print('Weight:',sess.run(W))
    print('biases:',sess.run(b))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值