【Paper Note】Attention is all your need

Attention is all your need链接
b站李沐论文带读
b站对transformer图解

难以理解的问题

什么是残差链接?
h 个不一样的距离空间指的是什么?

1.论文信息

论文全名:Attention is all your need
发表期刊/会议:Advances in neural information processing systems(neurIPS)
论文链接:[1706.03762] Attention Is All You Need (arxiv.org)
引用:Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.

2.Introduction

Transformer是第一个完全依靠self-attention来计算输入和输出表示而不使用序列对齐RNN或卷积的转导模型。

3.Model Architecture

输入序列(x1,…,xn) 通过encoder映射z = (z1,…,zn)(即机器学习算法可以使用的向量,一个句子有 n 个词,xt 是第 t 个词,zt 是第 t 个词的向量表示)。 根据z,decoder生成符号的一个输出序列(y1,…,ym) 。 在每一步decoder中,模型都是auto-regressive自回归的(过去时刻的输出也会作为当前时刻的输入)
在这里插入图片描述
对上图的描述:

  • 输入经过一个 Embedding层, i.e., 一个词进来之后表示成一个向量。得到的向量值和 Positional Encoding (3.5)相加
  • Nx:N个 Transformer 的 block 叠在一起。
  • Add & Norm: 残差连接 + Layernorm
  • Feed Forward: 前馈神经网络 MLP
  • decoder 是 encoder 相同部分 和 Masked Multi-Head Attention 组成一个块,重复 Nx 次
  • Shifted right 指的是 decoder 在之前时刻的一些输出,作为此时的输入。一个一个往右移

3.1 Encoder and Decoder Stacks

Encoder

  • Encoder 结构:重复 6 个图中红色的 layer(论文中让n=6)
  • 每个 layer 有 2 个 sub-layers:
    • 第一个 sub-layer 是 multi-head self-attention
    • 第二个 sub-layer 是 simple, position-wise fully connected feed-forward network, 简称 MLP
  • 每个 sub-layer 的输出做 残差连接 和 LayerNorm
  • L a y e r N o r m ( x + S u b l a y e r ( x ) ) LayerNorm(x + Sublayer(x)) LayerNorm(x+Sublayer(x))
  • residual connections 需要输入输出维度一致,不一致需要做投影。简单起见,固定 每一层的输出维度dmodel = 512
  • 简单设计:只需调 2 个参数 dmodel 每层维度有多大 和 N 多少层,影响后续一系列网络的设计,BERT、GPT。
  • Remark:和 CNN、MLP 不一样。MLP 通常空间维度往下减;CNN 空间维度往下减,channel 维度往上拉

batchnorm和layernorm

  • 标准化过程:均值变0方差变1,即所有数据减去均值再除以方差
  • 前者对每个特征(列feature行样本,一次处理一列),后者对每个样本norm
  • Mini-batch 的均值和方差:如果样本长度变化比较大的时候,每次计算小批量的均值和方差,均值和方差的抖动大。
  • LayerNorm 更稳定,不管样本长还是短,均值和方差是在每个样本内计算。

Decoder

  • auto-regressive 自回归。
    • 当前时刻的输入集 是 之前一些时刻的输出。做预测时,decoder 不能看到 之后时刻的输出。
    • 但是attention mechanism 每一次能看完完整的输入,所以要避免这个情况的发生。
    • 在 decoder 训练的时候,在预测第 t 个时刻的输出的时候,decoder不应该看到 t 时刻以后的那些输入。
    • 它的做法是通过一个带掩码 masked 的注意力机制Masked Multi-Head Attention。来保证 训练和预测时 行为一致。

3.2 Attention

Attention函数可以描述为将query和一组key-value映射成一个输出的函数,其中query、key、value和输出都是向量。
output为value的加权和,output 中 value 的权重 等价于 query 和对应的 key 的相似度

不同注意力机制就是相似度算法不同

3.2.1 Scaled Dot-Product Attention

在这里插入图片描述

A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V \mathrm{Attention}(Q,K,V)=\mathrm{softmax}(\dfrac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V

query 和 key 的长度是等长的,都等于 dk。value 的维度是 dv,输出也是 dv。

实际计算:不会一个 query 一个 query 的计算,因为运算比较慢。把多个 query 写成 一个矩阵,并行化运算。
Q:n * dk
K: m * dk
Q * K T:(n * dk) * (m * dk)T = (n * m)

softmax会让大的数据更大,小的更小(因为指数函数的曲线,建议回忆一下softmax的公式)

因为 softmax 最后的结果是希望 softmax 的预测值,置信的地方尽量靠近,不置信的地方尽量靠近零,以保证收敛差不多了。这时候梯度就会变得比较小,那就会跑不动,所以要除以根号dk,防止梯度过小

Masked

怎么做 mask :

  • 避免在 t 时刻,看到 t 时刻以后的输入。
  • 在计算权重的时候,t 时刻只用了 v1, …, vt-1 的结果,不要用到 t 时刻以后的内容。
  • 把 t 时刻以后 Qt 和 Kt 的值换成一个很大的负数,如 1 ^ (-10),进入 softmax 后,权重为0。 --> 和 V 矩阵做矩阵乘法时,没看到 t 时刻以后的内容,只看 t 时刻之前的 key - value pair。
  • 理解:mask是个 0 1矩阵,和attention(scale QK)size一样,t 时刻以后 mask 为 0
Multi-head attention

在这里插入图片描述

把整个 query、key、value 整个投影 project 到 1个低维,投影 h 次。然后再做 h 次的注意力函数,把每一个函数的输出 拼接在一起,然后 again projected,会得到最终的输出

  • 输入是:原始的 value、key、query
  • 进入一个线性层,线性层把 value、key、query 投影到比较低的维度。然后再做一个 scaled dot product (图 2 左图)。
  • 执行 h 次会得到 h 个输出,再把 h 个 输出向量全部合并 concat 在一起,最后做一次线性的投影 Linear,会回到我们的 multi-head attention。

为什么要做多头注意力机制呢?一个 dot product 的注意力里面,没有什么可以learn的参数。具体函数就是内积,为了识别不一样的模式,希望有不一样的计算相似度的办法。

加性 attention 有一个权重可learn,也许能learn到一些内容。

本文的 dot-product attention,先投影到低维,投影的 w 是可以学习的。

multi-head attention 给 h 次机会去学习 不一样的投影的方法,使得在投影进去的度量空间里面能够去匹配不同模式需要的一些相似函数,然后把 h 个 heads 拼接起来,最后再做一次投影。

multi-head attention 具体公式
MuItiHad ( Q K , V ) = Concat ( head 1 , . . . , head n ) W O \text{MuIti}\text{Had}(QK,V)=\text{Concat}(\text{head}_1,...,\text{head}_n)W^O\quad MuItiHad(QK,V)=Concat(head1,...,headn)WO
 head i = Attempt ( Q W i Q , K W i K , V W i V ) \text{head}_i=\text{Attempt}(QW_i^Q,KW_i^K,VW_i^V) headi=Attempt(QWiQ,KWiK,VWiV)

其中
 W i Q ∈ R d m o d e l × d k , W i K ∈ R d m o d e l x d k , W i V ∈ R V m o d e l × d , W O ∈ R h d v × d model .  W_{i}^{Q}\in\mathbb{R}^{d\mathrm{model}\times d k},W_{i}^{K}\in\mathbb{R^{d\mathrm{model}x d}k},W_{i}^{V}\in\mathbb{R^{\mathrm{model}\times d}_{V}},W^O\in\mathbb{R}^{hd_v\times d\text{model}}.  WiQRdmodel×dk,WiKRdmodelxdk,WiVRVmodel×d,WORhdv×dmodel.

Multi-head 的输入还是Q,K,V

但是输出是 不同的头的输出的 concat 起来,再投影到一个 WO 里面

每一个头 headi :是把 Q,K,V 通过 可以学习的 Wq, Wk, Wv 投影到 dv 上,再通过注意力函数,得到 headi。

本文采用 8 个 heads。因为有残差连接的存在使得输入和输出的维度至少是一样的。

投影维度 dv = dmodel / h = 512 / 8 = 64,每个 head 得到 64 维度,concat,再投影回 dmodel。

3.2.2 Applications of attentions in our model

回顾一下这张图
在这里插入图片描述

三个黄色的方框是三种不一样的注意力层

encoder 的注意力层

encoder 的注意力层,有三个输入,它分别表示的是key、value 和 query (所以有三个箭头)

一根线过来分叉成了三个:同样一个东西,既 key 也作为 value 也作为 query,所以叫做自注意力机制。key、value 和 query 其实就是一个东西,就是自己本身。

输入了 n 个 query,每个 query 会得到一个输出,那么会有 n 个输出。

输出 是 value 加权和(权重是 query 和 key 的相似度),输出的维度 == d – > 输入维度 == 输出维度

一般每个key和自身的相似度最大,权重最高
在这里插入图片描述

  • 不考虑 multi-head 和 有投影的情况:输出是 输入的加权和,其权重来自 每个向量与其它向量的相似度。
  • multi-head 和 有投影的情况:学习 h 个不一样的距离空间,使得输出变化。
decoder 的 masked multi-head attention

和前面的multi-head attention区别只有看不到t时刻以后的输入(权重为0)

decoder 的 multi-head attention

不再是self-attention,因为query 是来自 decoder 里 masked multi-head attention 的输出(看看三个箭头的来源)

3.3 Position-wise Feed-Forward Networks

Point-wise: 把一个 MLP 对每一个词 (position)作用一次,对每个词作用的是同样的 MLP

FFN: Linear + ReLU + Linear

单隐藏层的 MLP,中间 W1 扩维到4倍 2048,最后 W2 投影回到 512 维度大小,便于残差连接。

pytorch实现:2个线性层。因为pytorch在输入是3d的时候,默认在最后一个维度做计算。

最简单情况:没有残差连接、没有 layernorm、 attention 单头、没有投影。看和 RNN 区别

在这里插入图片描述
对上图的解释:

  • attention 对输入做一个加权和,加权和 进入 point-wise MLP。(画了多个红色方块 MLP, 是一个权重相同的 MLP)
  • point-wise MLP 对 每个输入的点 做计算,得到输出。
  • attention 作用:把整个序列里面的信息抓取出来,做一次汇聚 aggregation
  • 因为这个地方序列信息已经被汇聚完成,所以 MLP 是可以分开做的,也就整这个 transformer 是如何抽取序列信息,然后把这些信息加工成我最后要的语义空间,向量的过程

对比 RNN 怎么做的:

在这里插入图片描述
图中 绿色 表示之前的信息

  • RNN 跟 transformer 异:如何传递序列的信息
  • RNN 是把上一个时刻的信息输出传入下一个时候做输入。Transformer 通过一个 attention 层,去全局的拿到整个序列里面信息,再用 MLP 做语义的转换。
  • RNN 跟 transformer 同:语义空间的转换 + 关注点

用一个线性层 or 一个 MLP 来做语义空间的转换。

关注点:怎么有效的去使用序列的信息。

3.4 Embeddings and Softmax

embedding:将输入的一个词、词语 token 映射成 为一个长为 d 的向量。

乘根号dmodel让embedding 和 positional encosing 的 scale 差不多,可以做加法。

3.5 Positional Encoding

attention 不会有时序信息 。
但我们要处理时序数据怎么办呢?因此在输入里面加入时序Positional Encoding

怎么加入?一个在位置 i 的词,会把 i 位置信息加入到输入里面,
周期不一样的 sin 和 cos 函数计算 --> 任何一个值可以用一个长为 512 的向量来表示。

P E ( c o s , 2 ) = s i n ( p os/ 1000 0 2 i / d mode ) P E ( p os, 2 i + 1 ) = c o s ( p os/ 1000 0 2 i/ d mode ) \begin{matrix}P E_{(cos,2)}=sin(p\text{os/}10000^{2i\text{/}d\text{mode})}\\ P E_{(p\text{os,}2i\text{+}1)}=cos(p\text{os/}{}10000^{2\text{i/}d\text{mode}})\end{matrix} PE(cos,2)=sin(pos/100002i/dmode)PE(pos,2i+1)=cos(pos/100002i/dmode)

4. Why Self-attention

文章中和RNN CNN进行了对比
在这里插入图片描述
Maximum Path Length(一个信息从一个数据点走到另外一个数据点要走多少步)越短越好
attention主要需要使用更多的数据量

实验

WMT2014

使用标准的WMT 2014年英德数据集进行训练,该数据集包含约450万句对。句子使用字节对编码进行编码[3],具有约37,000个令牌的共享源目标词汇。对于英语-法语,使用了明显更大的WMT 2014英法数据集,该数据集包含3600万句,并将令牌拆分为32,000个单词-片词汇[38]。句对按大致的序列长度分组。每个训练批处理包含一组句对,包含大约25,000个源令牌和25,000个目标令牌。

表2:Transformer在2014年英语到德语和英语到法语新闻测试中获得了比以前最先进的型号更好的BLEU分数,而训练成本仅为其一小部分。
在这里插入图片描述

newstest2013

为了评估Transformer的不同组件的重要性,我们以不同方式改变了基础模型,并衡量了在开发集newstest2013上的英译德翻译性能的变化。我们使用前一节中描述的束搜索,但没有进行检查点平均。我们将这些结果列于表3中。
在表3的第(A)行,我们改变了注意力头的数量和注意力键和值的维度,保持计算量不变,如第3.2.2节所述。单头注意力比最佳设置低0.9个BLEU,而头部过多也会导致质量下降。
我们使用以下各值:K80为2.8、K40为3.7、M40为6.0、P100为9.5,作为TFLOPS(每秒浮点运算次数)的值。
表3:Transformer架构的变体。未列出数值的与基础模型中的数值相同。所有指标均在英译德翻译开发集newstest2013上测量。所列困惑度按我们的字节对编码的每个词片计算,不应与每个词的困惑度进行比较。

在这里插入图片描述

Section 23 of WSJ(华尔街日报数据集)

为了评估Transformer模型能否适应其他任务,我们在英语句法分析上进行了实验。这个任务提出了特定的挑战:输出受到了强烈的结构约束,并且通常比输入长得多。此外,RNN序列到序列模型在小数据集中未能达到最先进的成果。
我们使用Transformer的一个4层模型,维度为1024,在Wall Street Journal(WSJ)部分的Penn Treebank数据集[25]上进行训练,该部分包含约40,000个训练句子的。同时,我们在半监督设置下进行训练,使用更大自信和BerkleyParser语料库,其中约有1700万个句子。对于WSJ数据集,我们使用了一个包含16,000个标记的词汇表,而半监督设置中使用了32,000个标记的词汇表。
我们仅进行了少量实验,用于在开发集(Section 22)上选择丢弃率、注意力和残差学习率以及束搜索大小,以选择最佳模型。在推理过程中,我们将最大输出长度增加到输入长度+300。对于WSJ数据集和半监督设置,我们使用了大小为21的束搜索和α=0.3。
与RNN序列到序列模型相比,Transformer在仅使用40,000个句子的WSJ训练集上训练时,其表现也优于BerkeleyParser。
在这里插入图片描述

论文总结

在这篇文章中,介绍了Transformer,这是第一个完全基于注意力机制的序列转换模型,它用多头自注意力代替了编码器-解码器架构中最常用的循环层。
对于翻译任务,Transformer可以比基于循环或卷积神经层的架构更快地进行训练。在WMT 2014年英语到德语和WMT 2014年英语到法语翻译任务上,达到了新的最高水平。

代码

查看【机器学习】详解 Transformer

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值