Induction(数学归纳法)
Induction
续上一章继续介绍证明方法,这一讲来到了数学归纳法
数学归纳法主要分三个步骤:Base case, Inductive hypothesis, Inductive step
中文教科书中给出如下的定义:
一般地,证明一个与正整数 n 有关的数学命题,可按如下两个步骤进行:
(1)(归纳奠基)证明当 n = n 0 n= n_0 n=n0 ( n 0 ∈ N ∗ n_0 \in \mathbb{N^*} n0∈N∗ )时命题成立;
(2)(归纳递推)假设当 n = k ( k ∈ \in ∈ N ∗ \mathbb{N^*} N∗, k ≥ n 0 \geq n_0 ≥n0)时命题成立,证明当 n = k+1 时命题也成立。
根据(1)(2)就可以断定命题对于从 n 0 n_0 n0 开始的所有正整数 n 都成立。上述证明方法叫作数学归纳法。
类似的可以得到证明的结构
Want to show ∀ n ∈ ℕ, P(n)
Base case: P(0)
Inductive hypothesis: suppose P(k) for some k > 0
Inductive step: consider P(k + 1)
P(k) ⇒ P(k + 1)
Therefore, ∀ n ∈ ℕ, P(n)
Q.E.D.
E1. Theorem: ∀ n ∈ N , 1 + 2 + 3...... + n = n ( n + 1 ) 2 \forall \ n \ \in \mathbb{N} , \ 1 + 2 + 3 ...... + n = \frac{n(n+1)}{2} ∀ n ∈N, 1+2+3......+n=2n(n+1)
Proof:
Let
P
(
n
)
=
1
+
2
+
3......
+
n
=
n
(
n
+
1
)
2
P(n) = 1 + 2 + 3 ...... + n = \frac{n(n+1)}{2}
P(n)=1+2+3......+n=2n(n+1)
Base case : n = 1
Inductive hypothesis : suppose for some n
≥
\ge
≥ 2, P(n)
Inductive step : consider 1 + 2 + 3 … + n + (n + 1)
Therefore : P(k) ⇒ P(k + 1)
QED
课上还有两道例题在此就不赘述,主要围绕数学归纳法的介绍
Proving something stronger
也就是常见的增强命题,在证明一些问题的时候将命题增强再来证明反而会更简单(但是它这个例子体现不明显)
E2. Claim: the sum of the first n odd numbers is a perfect square.
Claim: the sum of the first n odd numbers is n2.
Proof:
Base case : n = 1
Inductive hypothesis : for some n > 1, the sum of the first n odd numbers is
n
2
n^2
n2
Inductive step : consider the n + 1st odd number = 2n + 1
From our inductive hypothesis, we know the sum of the first n + 1 odd numbers is
n
2
+
2
n
+
1
=
(
n
+
1
)
2
n^2 + 2n + 1= (n + 1)^2
n2+2n+1=(n+1)2
Therefore, by induction on n, we have proven our claim.
QED
Strong Induction(第二数学归纳法)
第二数学归纳法的本质和第一数学归纳法是一致的,两者是等价的,它的中文定义如下:
第二数学归纳法原理(强归纳法原理):设一正整数集合 N ∗ , n ∈ N ∗ , \mathbb{N^*},\ n \in \mathbb{N^*}, N∗, n∈N∗, P(n)为与n有关的命题
命题P(n)满足:
(1)当n=1时,P(1)成立
(2)假设对于正整数k,当n<k,命题P(n)成立时,命题P(n=k)也成立
那么,命题P(n)对于一切正整数都成立
理解:如果假设(2)成立,即:P(1),P(2),…,P(k-1)成立(k为任意正整数,表明成立命题数量的无穷性),可以推出P(k)成立。亦即:P(1),P(2),…,P(k-1)→P(k)的推导为真(P(1),P(2),…,P(k-1)为真),此时P(n)对一切正整数成立。一般情况下P(k)不复杂时,无需把P(1),P(2),…,P(k-1)成立 这些条件全用上,部分使用即可。例如只需P(k-2),P(k-1)即可推出P(k)。
可以简单的理解为,第二数学归纳法它允许我们用更多的条件P(1)-P(k), 但是要证明更复杂的结论P(n)-P(n+k),这样有时候能为证明带来更多的便利
类似的我们可以得到证明结构:
- Want to show ∀ n ∈ ℕ, P(n)
- Base case: P(0)
- Inductive hypothesis: suppose P(1) ∧ P(2) ∧ … ∧ P(k) for some k > 0
(this is different from P(k) for all k > 0! (this assumes what we’re trying to prove) - Inductive step: consider P(k + 1)
- P(k) ⇒ P(k + 1)
- Profit Therefore, ∀ n ∈ ℕ, P(n)
- Q.E.D.
Well-ordering principle(良序原理)
Every nonempty set of nonnegative integers has a smallest element.
每个非空的自然数集都有最小的元素。
(1) 要求集合非空——空集没有最小的元素。
(2) 要求自然数——负整数是不行的,非负有理数也是不行的。
(所以这和最值定理有关系吗?有没有大佬能解答一下)