CS70学习笔记(四)L3

Induction(数学归纳法)

Induction

续上一章继续介绍证明方法,这一讲来到了数学归纳法
数学归纳法主要分三个步骤:Base case, Inductive hypothesis, Inductive step
中文教科书中给出如下的定义:

一般地,证明一个与正整数 n 有关的数学命题,可按如下两个步骤进行:
(1)(归纳奠基)证明当 n = n 0 n= n_0 n=n0 n 0 ∈ N ∗ n_0 \in \mathbb{N^*} n0N )时命题成立;
(2)(归纳递推)假设当 n = k ( k ∈ \in N ∗ \mathbb{N^*} N, k ≥ n 0 \geq n_0 n0)时命题成立,证明当 n = k+1 时命题也成立。
根据(1)(2)就可以断定命题对于从 n 0 n_0 n0 开始的所有正整数 n 都成立。上述证明方法叫作数学归纳法

类似的可以得到证明的结构
Want to show ∀ n ∈ ℕ, P(n)
Base case: P(0)
Inductive hypothesis: suppose P(k) for some k > 0
Inductive step: consider P(k + 1)
P(k) ⇒ P(k + 1)
Therefore, ∀ n ∈ ℕ, P(n)
Q.E.D.

E1. Theorem: ∀   n   ∈ N ,   1 + 2 + 3...... + n = n ( n + 1 ) 2 \forall \ n \ \in \mathbb{N} , \ 1 + 2 + 3 ...... + n = \frac{n(n+1)}{2}  n N, 1+2+3......+n=2n(n+1)

Proof:
Let P ( n ) = 1 + 2 + 3...... + n = n ( n + 1 ) 2 P(n) = 1 + 2 + 3 ...... + n = \frac{n(n+1)}{2} P(n)=1+2+3......+n=2n(n+1)
Base case : n = 1
Inductive hypothesis : suppose for some n ≥ \ge 2, P(n)
Inductive step : consider 1 + 2 + 3 … + n + (n + 1)

Therefore : P(k) ⇒ P(k + 1)
QED

课上还有两道例题在此就不赘述,主要围绕数学归纳法的介绍

Proving something stronger

也就是常见的增强命题,在证明一些问题的时候将命题增强再来证明反而会更简单(但是它这个例子体现不明显)

E2. Claim: the sum of the first n odd numbers is a perfect square.

Claim: the sum of the first n odd numbers is n2.
Proof:
Base case : n = 1
Inductive hypothesis : for some n > 1, the sum of the first n odd numbers is n 2 n^2 n2
Inductive step : consider the n + 1st odd number = 2n + 1
From our inductive hypothesis, we know the sum of the first n + 1 odd numbers is n 2 + 2 n + 1 = ( n + 1 ) 2 n^2 + 2n + 1= (n + 1)^2 n2+2n+1=(n+1)2
Therefore, by induction on n, we have proven our claim.
QED

Strong Induction(第二数学归纳法)

第二数学归纳法的本质和第一数学归纳法是一致的,两者是等价的,它的中文定义如下:

第二数学归纳法原理(强归纳法原理):设一正整数集合 N ∗ ,   n ∈ N ∗ , \mathbb{N^*},\ n \in \mathbb{N^*}, N, nN, P(n)为与n有关的命题
命题P(n)满足:
(1)当n=1时,P(1)成立
(2)假设对于正整数k,当n<k,命题P(n)成立时,命题P(n=k)也成立
那么,命题P(n)对于一切正整数都成立
理解:如果假设(2)成立,即:P(1),P(2),…,P(k-1)成立(k为任意正整数,表明成立命题数量的无穷性),可以推出P(k)成立。亦即:P(1),P(2),…,P(k-1)→P(k)的推导为真P(1),P(2),…,P(k-1)为真),此时P(n)对一切正整数成立。一般情况下P(k)不复杂时,无需把P(1),P(2),…,P(k-1)成立 这些条件全用上,部分使用即可。例如只需P(k-2),P(k-1)即可推出P(k)。

可以简单的理解为,第二数学归纳法它允许我们用更多的条件P(1)-P(k), 但是要证明更复杂的结论P(n)-P(n+k),这样有时候能为证明带来更多的便利

类似的我们可以得到证明结构:

  • Want to show ∀ n ∈ ℕ, P(n)
  • Base case: P(0)
  • Inductive hypothesis: suppose P(1) ∧ P(2) ∧ … ∧ P(k) for some k > 0
    (this is different from P(k) for all k > 0! (this assumes what we’re trying to prove)
  • Inductive step: consider P(k + 1)
  • P(k) ⇒ P(k + 1)
  • Profit Therefore, ∀ n ∈ ℕ, P(n)
  • Q.E.D.

Well-ordering principle(良序原理)

Every nonempty set of nonnegative integers has a smallest element.
每个非空的自然数集都有最小的元素。

(1) 要求集合非空——空集没有最小的元素。
(2) 要求自然数——负整数是不行的,非负有理数也是不行的。

(所以这和最值定理有关系吗?有没有大佬能解答一下)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值