【大模型专栏—实战篇】Ollama的使用

在这里插入图片描述

大模型专栏介绍

😊你好,我是小航,一个正在变秃、变强的文艺倾年。

🔔本文为大模型专栏子篇,大模型专栏将持续更新,主要讲解大模型从入门到实战打怪升级。如有兴趣,欢迎您的阅读。

💡适合人群:本科生、研究生、大模型爱好者,期待与你一同探索、学习、进步,一起卷起来叭!

🔗篇章一:本篇主要讲解Python基础、数据分析三件套、机器学习、深度学习、CUDA等基础知识、学习使用AutoDL炼丹
🔗篇章二:本篇主要讲解基本的科研知识、认识数据和显卡、语言模型如RNN、LSTM、Attention、Transformer、Bert、T5、GPT、BLOOM、LLama、Baichuan、ChatGLM等系列、强化学习教程、大模型基础知识及微调等
🔗篇章三:本篇主要讲解智能对话、大模型基础实战如Ollama、Agent、QLoar、Deepspeed、RAG、Mobile Agent等、大模型领域前沿论文总结及创新点汇总



Ollama

介绍

Ollama是一个专为在本地环境中运行和定制大型语言模型而设计的工具。它提供了一个简单而高效的接口,用于创建、运行和管理这些模型,同时还提供了一个丰富的预构建模型库,可以轻松集成到各种应用程序中。Ollama的目标是使大型语言模型的部署和交互变得简单,无论是对于开发者还是对于终端用户。

安装

Win 安装

官网下载:https://ollama.com/

验证安装:

ollama --version

在这里插入图片描述
windows 的安装默认不支持修改程序安装目录,

  • 默认安装后的目录:C:\Users\username\AppData\Local\Programs\Ollama
  • 默认安装的模型目录:C:\Users\username\ .ollama
  • 默认的配置文件目录:C:\Users\username\AppData\Local\Ollama

我们可以设置环境变量来调整保存model的地址:

在这里插入图片描述
在这里插入图片描述
新建系统变量(别忘了提前创建文件夹):

在这里插入图片描述

Linux 安装
# 方式一:
# 更新包列表
sudo apt-get update
# 安装ollama
sudo apt-get install ollama

# 方式二:
curl -fsSL https://ollama.com/install.sh | sh

# 验证安装
ollama --version
Docker 安装
docker pull ollama/ollama
docker run -d -p 3000:8080 --gpus=all -v ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui --restart always ollama/ollama

# 验证
curl localhost:3000

常用命令

1. 启动Ollama服务
ollama serve

2. 从模型文件创建模型
ollama create

3. 显示模型信息
ollama show

4. 运行模型
ollama run 模型名称

5. 从注册表中拉去模型
ollama pull 模型名称

6. 将模型推送到注册表
ollama push

7. 列出模型
ollama list

8. 复制模型
ollama cp

9. 删除模型
ollama rm 模型名称

10. 获取有关Ollama任何命令的帮助信息
ollama help
📌 [ 笔者 ]   文艺倾年
📃 [ 更新 ]   2024.9.24
❌ [ 勘误 ]   /* 暂无 */
📜 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,
              本人也很想知道这些错误,恳望读者批评指正!

在这里插入图片描述

### 使用 Ollama 进行模型训练 #### 下载预训练模型 为了开始使用 Ollama 进行模型训练,首先需要获取合适的预训练模型。这可以通过两种方式完成: - **从 Hugging Face 或其他平台下载 GGUF 文件** 可以访问这些平台并查找所需的模型版本,下载相应的GGUF文件[^1]。 - **通过 Ollama 命令行工具拉取模型** 如果目标模型已经在 Ollama 的官方库中,则可以直接使用命令 `ollama pull [模型名称]` 来快速获得该模型。 ```bash ollama pull my_model_name ``` #### 准备环境配置 确保本地开发环境中已经安装了必要的依赖项和支持软件包,特别是对于 GPU 加速的支持。如果计划利用 NVIDIA 显卡加速计算过程,那么还需要确认 CUDA 已经被正确设置好,并且 Python 环境中有 PyTorch 或 TensorFlow 等框架可用[^2]。 #### 开始训练流程 一旦拥有了想要调整或继续训练的基础模型以及适当的工作站配置之后,就可以着手准备具体的训练脚本了。通常情况下,会涉及到以下几个方面的工作: - 数据集加载与处理:读入用于训练的数据源,并对其进行清洗、分词以及其他形式的前处理操作。 - 定义优化器和损失函数:选择适合当前任务需求的学习算法及其参数设定;同时指定衡量预测效果好坏的标准——即损失函数的形式。 - 设置超参调节策略:考虑采用随机搜索或是贝叶斯优化等方式来探索更优解空间内的组合方案。 - 启动迭代更新循环:执行多轮次的小批量梯度下降或其他类型的权重修正机制直至满足收敛条件为止。 下面给出一段简单的伪代码作为参考实现思路: ```python import torch from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model = AutoModelForCausalLM.from_pretrained('path_to_my_ollama_model') training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=8, save_steps=10_000, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, ) trainer.train() ``` 此段代码展示了基于Transformers库构建的一个典型训练工作流实例,在实际应用当中可能还需根据具体场景做相应修改和完善。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值