YOLOV5/YOLOV8改进:CVPR23:加入ConvNeXt V2主干,有效涨点

本文介绍了针对YOLOv5和YOLOv8的改进方法,通过引入ConvNeXt V2主干网络和自监督学习技术,提高目标检测的准确性和性能。详细步骤包括在相应文件中添加代码,并创建yaml配置文件以适应不同大小的模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址: https://arxiv.org/pdf/2301.00808v1.pdf

  在改进的架构和更好的表示学习框架的推动下,视觉识别领域在20世纪20年代初实现了快速现代化和性能提升。例如,以ConvNeXt[52]为代表的现代ConvNets在各种场景中都表现出了强大的性能。虽然这些模型最初是为使用ImageNet标签进行监督学习而设计的,但它们也可能受益于自监督学习技术,如掩蔽自动编码器(MAE)。然而,我们发现,简单地将这两种方法结合起来会导致较差的性能。在本文中,我们提出了一个完全卷积屏蔽的自动编码器框架和一个新的全局响应归一化(GRN)层,该层可以添加到ConvNeXt架构中,以增强信道间特征竞争。这种自我监督学习技术和架构改进的共同设计产生了一个名为ConvNeXt V2的新模型家族,它显著提高了系统的性能

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AICurator

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值