Deeplabv3+改进1:添加CBAM注意力机制|有效涨点

🔥【DeepLabv3+改进专栏!探索语义分割新高度】
🌟 你是否在为图像分割的精度与效率发愁?
📢 本专栏重磅推出:
✅ 独家改进策略:融合注意力机制、轻量化设计与多尺度优化
✅ 即插即用模块:ASPP+升级、解码器

PS:订阅专栏提供完整代码

目录

论文简介

步骤一

步骤二

步骤三

步骤四

步骤五


论文简介

我们提出卷积块注意力模块(CBAM),这是一种简单而有效的前馈卷积神经网络注意力模块。给定一个中间特征图,我们的模块会依次沿两个独立维度(通道和空间)推断注意力图,然后将注意力图与输入特征图相乘,以实现自适应特征细化。由于 CBAM 是一个轻量级且通用的模块,它可以无缝集成到任何 CNN 架构中&#

### DeepLabV3+ 结合注意力机制的实现方法 DeepLabV3+ 是一种广泛应用于语义分割任务的强大模型。为了进一步提升其性能,可以将注意力机制融入到该模型中。以下是具体的方法以及相关的论文和代码资源。 #### 方法概述 通过引入注意力机制,可以使模型更加关注重要的特征区域并抑制无关的信息。在主干网络中添加特定结构来增强这种能力是一种常见的方式。例如,在主干网络中加入 **REP_BLOCK** 或者 **UniversalInvertedBottleneckBlock (UIBB)** 可以显著提高模型的表现[^1][^2]。 这些模块的设计通常基于卷积神经网络中的通道注意力或空间注意力概念。它们能够动态调整不同位置或者通道的重要性权重,从而帮助模型更好地捕捉全局上下文信息。 #### 实现细节 ##### 1. 主干网络改造 可以在 ResNet 或其他骨干网络的基础上插入注意力模块。比如 SE-ResNet 就是在标准残差单元上增加了 Squeeze-and-Excitation (SE) 层用于建模跨通道依赖关系: ```python import torch.nn as nn class SELayer(nn.Module): def __init__(self, channel, reduction=16): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) ``` 此代码片段展示了如何构建一个简单的 SE 模块,并将其嵌入到现有的 CNN 架构之中[^3]。 ##### 2. ASPP 改进 除了修改基础架构外,还可以针对 Atrous Spatial Pyramid Pooling (ASPP) 部分做相应的改动。例如,CBAM(Convolutional Block Attention Module)既考虑了通道维度也兼顾到了空间维度上的注意力建模效果良好: ```python from torchvision import models import torch.nn.functional as F def apply_cbam_to_aspp(aspp_layer): class CBAM_ASPP(torch.nn.Module): def __init__(self, base_aspp): super(CBAM_ASPP, self).__init__() self.base_aspp = base_aspp # Add CBAM layers here... def forward(self, input_tensor): output = self.base_aspp(input_tensor) # Apply spatial and channel attention... return output return CBAM_ASPP(aspp_layer) ``` 上述伪代码说明了怎样把传统 ASPP 替换为带有 CBAM 的版本[^4]。 #### 论文推荐 对于希望深入理解这一领域的朋友来说,《Squeeze-and-Excitation Networks》 和《CBAM: Convolutional Block Attention Module》两篇经典文章值得阅读。前者提出了经典的 SE 块;后者则扩展至联合处理空间与信道方向的关注度计算问题[^5]. 另外,《Rethinking Atrous Convolution for Semantic Image Segmentation》也是关于 Deeplab v3/v3+ 设计理念的重要参考资料之一[^6]. #### 开源项目链接 GitHub 上有许多高质量开源实现可供参考学习: - https://github.com/pytorch/vision/tree/main/torchvision/models/segmentation - https://github.com/VainF/DeepLabV3Plus-PyTorch 以上仓库提供了 PyTorch 版本的基础框架和支持多种变体的功能选项,非常适合初学者快速入门尝试各种改进方案[^7].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AICurator

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值