🔥【DeepLabv3+改进专栏!探索语义分割新高度】
🌟 你是否在为图像分割的精度与效率发愁?
📢 本专栏重磅推出:
✅ 独家改进策略:融合注意力机制、轻量化设计与多尺度优化
✅ 即插即用模块:ASPP+升级、解码器
早鸟价:69.9!后续会涨价,至少会更新100篇,订阅提供完整代码和答疑服务!
专栏简介:
本专栏改进采用mmsegmentation进行改进,改进模块即插即用,方便使用。mmsegmentation包含多种其他模型,如Unet,mask2former,方便进行性能对比。
改进目录:
Deeplabv3+改进1:添加CBAM注意力机制|有效涨点
Deeplabv3+改进2:添加A2Attention注意力机制|有效涨点
Deeplabv3+改进3:在主干网络中添加NAMAttention|助力涨点!
Deeplabv3+改进4:在主干网络中添加GAMAattention|助力涨点!
Deeplabv3+改进5:在主干网络中添加EMAattention|助力涨点!
DeepLabv3+改进6:在主干网络中添加SegNext_Attention|助力涨点
DeepLabv3+改进7:在主干网络中添加SegNext_Attention|助力涨点
DeepLabv3+改进8:在主干网络中添加SIM注意力机制|助力涨点
DeepLabv3+改进9:在主干网络中添加SpatialGroupEnhance|通过为每个语义组中的每个空间位置生成注意力因子来调整每个子特征的重要性
DeepLabv3+改进10:在主干网络中添加LSKBlock|动态调整其大型空间感受野,助力小目标识别
DeepLabv3+改进11:在主干网络中添加CPCA注意力机制|聚焦于信息丰富的通道和重要区域
DeepLabv3+改进12:在主干网络中添加MLCA注意力机制|轻量级的混合局部通道注意力
DeepLabv3+改进13:在主干网络中添加repvgg|
DeepLabv3+改进14:在主干网络中添加SEAttention
DeepLabv3+改进15:在主干网络中添加TripletAttention|使用三分支结构捕捉跨维度交互来计算注意力权重的新方法