QAT量化 demo

本文详细介绍了QAT量化的基本流程,包括定义量化模型、准备数据、训练、重新量化和微调,以及提供了一个使用PyTorch实现的QAT量化代码示例。
摘要由CSDN通过智能技术生成

一、QAT量化基本流程

QAT过程可以分解为以下步骤:

  1. 定义模型:定义一个浮点模型,就像常规模型一样。
  2. 定义量化模型:定义一个与原始模型结构相同但增加了量化操作(如torch.quantization.QuantStub())和反量化操作(如torch.quantization.DeQuantStub())的量化模型。
  3. 准备数据:准备训练数据并将其量化为适当的位宽。
  4. 训练模型:在训练过程中,使用量化模型进行正向和反向传递,并在每个 epoch 或 batch 结束时使用反量化操作计算精度损失。
  5. 重新量化:在训练过程中,使用反量化操作重新量化模型参数,并使用新的量化参数继续训练。
  6. Fine-tuning:训练结束后,使用fine-tuning技术进一步提高模型的准确率。

在这里插入图片描述

二、QAT量化代码示例

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.quantization import QuantStub, DeQuantStub, quantize_dynamic, prepare_qat, convert

# 模型
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        # 量化
        self.quant = QuantStub()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(128, 10)
        # 反量化
        self.dequant = DeQuantStub()

    def forward(self, x):
        # 量化
        x = self.quant(x)
        x = self.conv1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.relu(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        # 反量化
        x = self.dequant(x)
        return x

# 数据
transform = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])
train_data = datasets.CIFAR10(root='./data', train=True, download=True,transform=transform)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=1,shuffle=True, num_workers=0)

# 模型 优化器
model = MyModel()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# Prepare the model
model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
model = prepare_qat(model)

# 训练
model.train()
for epoch in range(1):
    for i, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data)
        loss = nn.CrossEntropyLoss()(output, target)
        loss.backward()
        optimizer.step()
        if i % 100 == 0:
            print('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f' %
                  (epoch+1, 10, i+1, len(train_loader), loss.item()))

    # Re-quantize the model
    model = quantize_dynamic(model, {'': torch.quantization.default_dynamic_qconfig}, dtype=torch.qint8)

# 微调
model.eval()
for data, target in train_loader:
    model(data)
model = convert(model, inplace=True)
  • 15
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
PyTorch QAT(Quantization Aware Training)是一种量化训练方法,可以将浮点模型转换为定点模型,从而提高模型的推理速度和减少存储空间。下面是一个简单的PyTorch QAT示例代码: ```python import torch import torch.nn as nn import torch.optim as optim import torch.quantization as quantization # 定义一个简单的模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(784, 256) self.fc2 = nn.Linear(256, 128) self.fc3 = nn.Linear(128, 10) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = x.view(-1, 784) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x # 加载MNIST数据集 train_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('/mnist/', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=128, shuffle=True) # 定义训练函数 def train(model, criterion, optimizer, train_loader, num_epochs): for epoch in range(num_epochs): model.train() for i, (inputs, targets) in enumerate(train_loader): inputs, targets = inputs.cuda(), targets.cuda() outputs = model(inputs) loss = criterion(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step() # 定义评估函数 def evaluate(model, data_loader): model.eval() correct = 0 total = 0 with torch.no_grad(): for inputs, targets in data_loader: inputs, targets = inputs.cuda(), targets.cuda() outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += (predicted == targets).sum().item() return 100.0 * correct / total # 定义量化模型函数 def quantize(model): model.qconfig = quantization.get_default_qat_qconfig('fbgemm') quantization.prepare_qat(model, inplace=True) return model # 定义反量化模型函数 def dequantize(model): quantization.convert(model, inplace=True) return model # 实例化模型、损失函数和优化器 model = Net().cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 train(model, criterion, optimizer, train_loader, 5) # 评估模型 test_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('/mnist/', train=False, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=128, shuffle=True) accuracy = evaluate(model, test_loader) print('Accuracy before quantization: %.2f%%' % accuracy) # 量化模型 quantized_model = quantize(model) # 评估量化模型 accuracy = evaluate(quantized_model, test_loader) print('Accuracy after quantization: %.2f%%' % accuracy) # 反量化模型 dequantized_model = dequantize(quantized_model) # 评估反量化模型 accuracy = evaluate(dequantized_model, test_loader) print('Accuracy after dequantization: %.2f%%' % accuracy) ``` 以上代码中的 `Net` 类定义了一个简单的神经网络模型。`train` 函数用于训练模型,`evaluate` 函数用于评估模型的准确性。`quantize` 函数用于将模型量化为定点模型,`dequantize` 函数用于反量化模型。在主程序中,首先使用浮点模型训练模型,然后量化模型,评估量化模型的准确性,反量化模型,再次评估反量化模型的准确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BILLY BILLY

你的奖励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值