Pytorch中的Hook
使用Hook函数获取网络中间变量.
Hook函数机制是不改变函数主体,实现额外功能,像一个挂件,挂钩。正是因为PyTorch计算图动态图的机制,所以才会有Hook函数。在动态图机制的运算,当运算结束后,一些中间变量就会被释放掉,例如,特征图,非leaf节点的梯度。但是有时候,我们需要这些中间变量,所以就出现了Hook函数。
torch提供了四种hook方法,分别用于
获取各个参数的梯度值。tensor.register_hook(hook)
获取各个层前向传播的输入输出值。Module.register_forward_hook(hook)
获取各个层前向传播的输入值。Module.register_forward_pre_hook(hook)
获取各个层反向传播的梯度值。Module.register_backward_hook(hook)