hook钩子函数的使用

Pytorch中的Hook
使用Hook函数获取网络中间变量.
Hook函数机制是不改变函数主体,实现额外功能,像一个挂件,挂钩。正是因为PyTorch计算图动态图的机制,所以才会有Hook函数。在动态图机制的运算,当运算结束后,一些中间变量就会被释放掉,例如,特征图,非leaf节点的梯度。但是有时候,我们需要这些中间变量,所以就出现了Hook函数。
torch提供了四种hook方法,分别用于

获取各个参数的梯度值。tensor.register_hook(hook)
获取各个层前向传播的输入输出值。Module.register_forward_hook(hook)
获取各个层前向传播的输入值。Module.register_forward_pre_hook(hook)
获取各个层反向传播的梯度值。Module.register_backward_hook(hook)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BILLY BILLY

你的奖励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值