基于matlab的捷联惯导算法编程(一)

目录

前言

一、基本内容

(一)捷联式惯性导航系统概述

1.捷联式惯导系统

2.捷联式惯导系统原理示意图   

3.捷联惯导系统基本原理图

(二)捷联系统力学编排

1.坐标系

2.常用坐标系

3.比力方程

4.导航坐标系的运动角速度

5.速度参数计算

6.位置参数计算

(三)捷联惯导系统姿态方程

1.基本结算流程

 2.姿态方程

(1)思路和目的

(2)姿态矩阵 

3.姿态矩阵求解

(1)四元数与姿态矩阵

(2)四元数基础

(3)四元数微分方程

二、基本算法

(一)matlab子函数

(二)捷联惯导算法主程序

三、成果展示

(一)整图对比

(二)捷联惯导和组合导航误差对比

四、总结

(一)建立捷联惯导的概念,加深了对基本原理的理解

(二)加强了动手能力的分析,用编程实现原理数据化和图形化

(三)捷联惯导的问题处理

1.旋转矢量转换为四元数或旋转矩阵

2.采用二子样算法编程

3.调试程序的困难


前言

最近对惯性导航方面的问题比较感兴趣,一是基于课程学习;二是惯导是组合导航的核心,组合导航是未来的趋势,要学组合导航,先要把核心知识惯导弄明白;三是惯导的基本原理用matlab编程来实现,加深了对惯导基本原理和方法的理解。下面将分成基于matlab的捷联惯导算法编程(一)、(二)、(三)、(四)


一、基本内容

(一)捷联式惯性导航系统概述

1.捷联式惯导系统

如图1所示,惯性测量部件直接固联于载体上,计算机构成“数学平台”替代实体平台;与平台式惯导系统相比,可靠性高、体积小、价格便宜。

aaa
  图1 捷联惯导系统

2.捷联式惯导系统原理示意图   

图2 捷联惯导系统原理图

(1)加速度计测量载体质心比力;

(2)陀螺仪测量载体系相对惯性空间的角运动;

(3)导航计算机建立载体系与导航系的数学关系,并将载体系比力投影至导航系,进而计算导航参数。

3.捷联惯导系统基本原理图

图3 捷联惯导系统基本原理图

(二)捷联系统力学编排

1.坐标系

有关定位,则必然涉及到确定自身的位置。而导航,需要对载体进行制导控制,除了自身位置,还需要知道目标的位置。在空间中,位置用坐标来表示,而坐标总是基于一个坐标系的。坐标系表征的是一种投影关系转换法则,坐标则是根据该投影关系在坐标框架里的位置。

2.常用坐标系

导航系统中常用的坐标系有载体坐标系(Body Frame, b),导航坐标系(Navigation System, n),地心地固坐标系(Earth Center Earth Fixed, e)。不同的坐标系有助于从不同角度去理解载体的空间位置。 其中,b 系以载体中心(自定义)为原点,往前为 y 轴,向上为 z 轴。n 系沿地球横切面向上为 z 轴,沿经线指向北极原点为 y 轴,该系又称作东北天坐标系、当地水平坐标系。n 系是以地表某点为原点基准而建立的坐标系,因此这个坐标系有利于理解载体在地表的位置和前进方向,较为常用。e 系则以地球质心为中心,x 轴指向赤道与格林尼治子午线的交点。Z 轴沿自转轴指向协议北极。明显地,e 系以地球作为基准,因此方便同时表示地表以及地球外空间的物体。对于卫星导航系统而言,使用 e 系方便在同一坐标系内表示接收机和卫星的位置。以上坐标系均服从右手螺旋准则,即 x,y,z 三轴相互垂直,当大拇指指向 z 轴,其余四指指向 x 轴时,四指沿顺时针内握指向 y 轴。

其完整定义见表1所示:

表1 常用坐标系

它们之间的关系如图4所示:

图4 常用坐标系

3.比力方程

首先定义3种坐标于地球上,分别是i系,e系,n系如图5所示。

图5 比力方程坐标系

根据哥氏定理:矢量的绝对导数等于相对导数和牵连导数之和。推导公式和导航参数计算流程图6如下: 

图6 导航参数计算流程图

 

 \[\dot A = {(\dot A)_r} + \omega  \times \]

\[{\left. {\frac{ {dR}}{ {dt}}} \right|_i} = {\left. {\frac{ {dR}}{ {dt}}} \right|_e} + {\omega _{ie}} \times R\]

\[{\left. {\frac{ {dR}}{ {dt}}} \right|_i} = {V_{e{\rm{n}}}} + {\omega _{ie}} \times R\]

\[{\left. {\frac{ { {d^2}R}}{ {d{t^2}}}} \right|_i} = {\left. {\frac{d}{ {dt}}} \right|_i}({V_{e{\rm{n}}}} + {\omega _{ie}} \times R)\]

\[{\left. {\frac{ {d{V_{en}}}}{ {dt}}} \right|_i} = {\left. {\frac{ {d{V_{en}}}}{ {dt}}} \right|_n} + {\omega _{in}} \times {V_{e{\rm{n}}}}\]

\[{\omega _{i{\rm{n}}}} = {\omega _{ie}} + {\omega _{e{\rm{n}}}}\]

\[{\left. {\frac{ {d{V_{en}}}}{ {dt}}} \right|_i} = {\dot V_{en}} + ({\omega _{in}} + {\omega _{en}}) \times {V_{e{\rm{n}}}}\]

\[{\left. {\frac{ { {d^2}R}}{ {d{t^2}}}} \right|_i} = {\dot V_{en}} + (2{\omega _{ie}} + {\omega _{en}}) \times {V_{en}} + {\omega _{ie}} \times ({\omega _{ie}} \times R)\]

\[f + G = {\dot V_{e{\rm{n}}}} + (2{\omega _{ie}} + {\omega _{en}}) \times {V_{en}} + {\omega _{ie}} \times ({\omega _{ie}} \times R)\]

\[{\dot V_{en}} = {f^n} - (2{\omega _{ie}} + {\omega _{en}}) \times {V_{e{\rm{n}}}} + g\]

投影到导航坐标系下,导航方程:

\[\dot V_{\rm{e}}^n = C_b^n{f^b} - (2\omega _{ie}^n + \omega _{en}^n) \times V_e^n + {g^n}\]

姿态方程:

\[\dot C_b^n = C_b^n\Omega _{nb}^b\]

其中:

\[\omega _{nb}^b = \omega _{ib}^b - \omega _{in}^b = \omega _{ib}^b - C_n^b\omega _{in}^n = \omega _{ib}^b - C_n^b(\omega _{ie}^n + \omega _{en}^n)\]

4.导航坐标系的运动角速度

如图7所示,按照东北天分解,令东为正,西为负。对导航坐标系的运动角速度,即对平台施加指令加速度 。

图7 导航坐标系运动角速度分解

 地球自转:

\[\omega _{ie}^n = \left[ \begin{array}{l}
\Omega _x^n\\
\Omega _y^n\\
\Omega _z^n
\end{array} \right] =\left[ \begin{array}{c}
0\\
\Omega \cos \varphi \\
\Omega \sin \varphi 
\end{array} \right]\]

载体运动:

\[\omega _{en}^n = \left[ {\begin{array}{*{20}{c}}
  {\omega _{enx}^n} \\ 
  {\omega _{eny}^n} \\ 
  {\omega _{enz}^n} 
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
  { - \frac{ {V_{eny}^n}}{ { {R_N}}}} \\

  • 33
    点赞
  • 175
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kye..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值