基于matlab的捷联惯导算法编程(四)

本文展示了基于MATLAB的捷联惯导算法编程成果,包括整图对比和误差对比。直角坐标误差图显示X和Y分量误差上升,Z分量误差急剧增加;速度误差为正负交替,东向最大误差12m/s,北向32.5m/s,天向19m/s;姿态角误差中航向角φ抖动明显,最大误差达-358.6°。
摘要由CSDN通过智能技术生成

目录

前言

三、成果展示

(一)整图对比

(二)捷联惯导和组合导航误差对比

1.直角坐标误差图

2.速度误差图

3.姿态角误差


前言

此篇章为成果展示,一是进行整图对比,二是捷联惯导和组合导航误差对比。

三、成果展示

(一)整图对比

首先,如图10所示,设置了8张图,上面一组图为捷联惯导解算的4张图,下面一组为组合导航解算的4张图。分别是姿态角的俯仰角和横滚角、航向角、速度、直角坐标XY的值。通过对比分析,一是姿态角图形差不多,如图11和12所示;二是速度图,捷联惯导解算的东、北速度再上面抖动,天向速度一直在上升,没有收敛趋势,如图13所示;三是直角坐标X,Y值的二维图,捷联惯导成上升转弯趋势,没有回到原地形成回路,而组合导航,由于有卫导辅助,在解算的过程中,有修正数据,故形成了回路,如图14所示。

%%%%%
%整图对比
%%%%%
%姿态角对比
msplot(241,1:2008,avp1(:,1:2),'\theta,\gamma(\circ)'); title('惯导解算的俯仰角和横滚角'); legend('\it\theta','\it\gamma')   
msplot(245,1:2008,a1(:,8:9),'\theta,\gamma(\circ)');  title('组合导航解算的俯仰角和横滚角');legend('\it\theta','\it\gamma')
msplot(242,1:2008,avp1(:,3),'\psi/(\circ)');  title('惯导解算的航向角');
msplot(246,1:2008,a1(:,10),'\psi/(\circ)');   title('组合导航解算的航向角');
% % 
% % %速度对比
msplot(243,1:2008,avp1(:,4:6),'Vel/(m.s^{-1})');  title('惯导解算的速度');legend('\itv\rm_E','\itv\rm_N','\itv\rm_U')
msplot(247,1:2008,a1(:,6:8),'Vel/(m.s^{-1})');  title('组合导航解算的速度');legend('\itv\rm_E','\itv\rm_N','\itv\rm_U
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kye..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值