文章目录
1.前言
- ResNet论文
- 论文全称Deep Residual Learning for Image Recognition(用于图像识别的深度残差学习)
- 深度残差网络ResNet,在2015年ImageNet和COCO竞赛中获得五项冠军,在2016年CVPR中获得最佳论文
- 作者是何凯明、张祥雨、任少卿、孙剑来自微软亚洲研究院MSRA
2.摘要
摘要翻译:
- 深度神经网络难以训练,我们提出了一种残差学习的框架,用于解决非常深网络的训练问题,我们明确的将网络学习框架重构了,原来网络直接去拟合分布,而现在让网络直接去拟合相对于上一层输出的残差。我们做了全面的实验,表明残差的网络更容易学习,而且能够通过增加深度来提升性能和准确率。
- 在ImageNet数据集上,我们训练了152层的网络——是VGG的8倍,但是152层的网络在参数量和模型复杂度上却比VGG低。
- 很多的残差模型集成达到了3.57%左右的错误率,这个结果赢得了2015年ImageNet图像分类竞赛的冠军,我们还在CIFAR-10数据集上构建了100层和1000层的网络。
- 神经网络的深度是非常重要的,网络越深,它能够提取特征的层次就越丰富,所以各类计算机视觉任务都要依赖于深度网络提取的特征。
- 仅仅是因为我们这个网络非常深,所以能提取很好的特征。仅仅是换了一个特征,我们就在COCO数据集上达到了82%的相对提升,而且在ImageNet和COCO2015年的五个主要赛道上获得了冠军,比如说ImageNet的目标检测定位,COCO的目标检测和COCO的分割
- ImageNet-2015 { 分类 定位 检测 \begin{cases} 分类\\ 定位\\ 检测\end{cases} ⎩