ResNet

1.前言

  • ResNet论文
  • 论文全称Deep Residual Learning for Image Recognition(用于图像识别的深度残差学习)
  • 深度残差网络ResNet,在2015年ImageNet和COCO竞赛中获得五项冠军,在2016年CVPR中获得最佳论文
  • 作者是何凯明、张祥雨、任少卿、孙剑来自微软亚洲研究院MSRA

2.摘要

摘要翻译:

  • 深度神经网络难以训练,我们提出了一种残差学习的框架,用于解决非常深网络的训练问题,我们明确的将网络学习框架重构了,原来网络直接去拟合分布,而现在让网络直接去拟合相对于上一层输出的残差。我们做了全面的实验,表明残差的网络更容易学习,而且能够通过增加深度来提升性能和准确率。
  • 在ImageNet数据集上,我们训练了152层的网络——是VGG的8倍,但是152层的网络在参数量和模型复杂度上却比VGG低。
  • 很多的残差模型集成达到了3.57%左右的错误率,这个结果赢得了2015年ImageNet图像分类竞赛的冠军,我们还在CIFAR-10数据集上构建了100层和1000层的网络。
  • 神经网络的深度是非常重要的,网络越深,它能够提取特征的层次就越丰富,所以各类计算机视觉任务都要依赖于深度网络提取的特征。
  • 仅仅是因为我们这个网络非常深,所以能提取很好的特征。仅仅是换了一个特征,我们就在COCO数据集上达到了82%的相对提升,而且在ImageNet和COCO2015年的五个主要赛道上获得了冠军,比如说ImageNet的目标检测定位,COCO的目标检测和COCO的分割
  • ImageNet-2015 { 分类 定位 检测 \begin{cases} 分类\\ 定位\\ 检测\end{cases}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Simple_learning_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值