数字逻辑电路(二)

学习用

目录

逻辑函数及其简化

1.基本逻辑运算和逻辑表达式

3.逻辑代数的公式和规则

4.逻辑函数的标准表达式

5.逻辑函数的简化


逻辑函数及其简化

1.基本逻辑运算和逻辑表达式

        1.1与(AND) 运算—&

        与逻辑关系:只有当决定某一事件的条件全部具备时,这一事件才会发生

        逻辑表达式:F=A\cdot B

        

        1.2或(OR) 运算—|

        或逻辑关系:只要在决定某一事件的各种条件中,有一个或几个条件具备时,这一事件就会发生。

逻辑表达式:F=A+B

        1.3非(NOT) 运算—▔

非逻辑关系:事件发生的条件具备时,事件不会发生;事件发生的条件不具备时,事件发生。

逻辑表达式:F=\overline{A}

        1.4与非 运算

        先进行与运算再进行非运算

        逻辑表达式:F=\overline{A\cdot B}

        1.5或非 运算

        先进行或运算再进行非运算

        逻辑表达式:F=\overline{A+B}

        1.6与或非 运算

        先分别进行与运算,再对结果进行或非运算

        逻辑表达式:F=\overline{A\cdot B+C\cdot D}

 

        1.7异或 运算—\oplus

        当两个输入变量相异时,结果为1,否则为0

        逻辑表达式:F=A\oplusB=A\cdot \overline{B} +\overline{A} \cdot B

 

        1.8同或 运算—

        当两个输入变量相同时,结果为1,否则为0

         逻辑表达式:F=A⊙B=\overline{A}\cdot \overline{B}+A\cdot B

3.逻辑代数的公式和规则

        积之和/和之积

        逻辑函数都可以用积之和/和之积的方式表示

        例:

        和之积(输出值为1的逻辑值):P=\overline{A}BC+A\overline{B}C+AB\overline{C}+ABC

         积之和:P=(A+B+C)(A+B+ \overline{C} )(A+\overline{B}+C)(\overline{A}+B+C)

        反演律:\overline{A+B} = \overline{A} \cdot \overline{B}

                       \overline{A\cdot B} = \overline{A} + \overline{B}

        反演规则: “.”与“+”互换

                           “0”与“1”互换

                           原变量与反变量互换

                例:F=\overline{AB+C}\cdot D+AC

                        \overline{F}=[\overline{(\overline{A}+\overline{B})\cdot \overline{C}}+\overline{D}]\cdot (\overline{A}+\overline{C})

        对偶规则: “.”与“+”互换

                           “0”与“1”互换

                例:F=\overline{\overline{A}\cdot \overline{B\cdot \overline{C}}}

                        F^{\ast }=\overline{\overline{A}+\overline{B+\overline{C}}}

        常用公式

        1.AB+A\overline{B}=A(吸收律)

           对偶式:(A+B)(A+\overline{B})=A

        2.A+AB=A

           对偶式:A(A+B)=A

        3.A+\overline{A}B=A+B

           对偶式:A(\overline{A}+B)=AB

        4.AB+\overline{A}C+BC=AB+\overline{A}C(消去多余项)

          对偶式:(A+B)(\overline{A}+C)(B+C)=(A+B)(\overline{A}+C)

        5.AB+\overline{A}C=(A+C)(\overline{A}+B)

           对偶式:(A+B)(\overline{A}+C)=AC+\overline{A}+B

4.逻辑函数的标准表达式

        最小项表达式—真值表中,输出为1的积之和的形式

        例:

        积之和:P=\overline{A}BC+A\overline{B}C+AB\overline{C}+ABC

        最小项表达式:F(A,B,C)=\sum m(3,5,6,7)

        最大项表达式—真值表中,输出为0的和之积的形式

        如上:

        和之积:P=(\overline{A}+\overline{B}+\overline{C})(\overline{A}+\overline{B}+C)(\overline{A}+B+\overline{C})(A+\overline{B}+\overline{C})

        最大项表达式:F(A,B,C)=\prod M(0,1,2,4)

        F(A,B,C)=\sum m(0,1,3)=\prod M(2,4,5,6,7)

        \overline{F(A,B,C)}=\sum \overline m(2,4,5,6,7)=\prod M(2,4,5,6,7)

        F^{*}(A,B,C)=\sum m^{*}(0,1,2,3,5)=\prod M^{*}(4,6,7)

                                   \sum m^{*}(2^3-1-\overline m_{0},2^3-1-\overline m_{1},2^3-1-\overline m_{2},2^3-1-\overline m_{3})

5.逻辑函数的简化

        5.1公式简化法

                5.1.1合并项法

                A+\overline A=1,AB+A\overline B=A

                 5.1.2吸收法

                 A+AB=A,AB+\overline A C+BC=AB+\overline A C

                 

                 5.1.3消去法

                 A+\overline A B =A+B

                 5.1.4配项法

                 利用A+\overline A=1,A\cdot \overline A=0,AB+\overline A C=AB+\overline A C+BC将某一乘积项展开为两项,或添加某乘积项,再与其它乘积项进行合并化简。

        5.2卡诺图简化

                5.2.1卡诺图的构成

                5.2.1卡诺图的简化

        (1)几何相邻包括相接紧挨着相对任一行或一列的两头;相重—对折起来后位置重合。
        (2)从各卡诺图可以看出,在n个变量的卡诺图中,能从图形上直观、方便地找到每个最小项的n个相邻最小项。

                

        

                (1)2个相邻的最小项可以合并,消去1个取值不同的变量。

 

                (2)4个相邻的最小项可以合并,消去2个取值不同的变量。

                (3)8个相邻的最小项可以合并,消去3个取值不同的变量。

                5.2.3卡诺图合并最小项的原则(画圈的原则)

                (1)尽量画大圈,但每个圈内只能含有2(=0,1,2,3.…)个相邻项。要特别注意对边相邻性和四角相邻性。
                (2)圈的个数尽量少
                (3)卡诺图中所有取值为1的方格均要被圈过,即不能漏下取值为1的最小项。
                (4)允许重复圈,但在新画的包围圈中至少要含有1个未被圈过的1方格否则该包围圈是多余的。
                (5)孤立的最小项单独包围。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值