学习用
目录
逻辑函数及其简化
1.基本逻辑运算和逻辑表达式
1.1与(AND) 运算—&
与逻辑关系:只有当决定某一事件的条件全部具备时,这一事件才会发生
逻辑表达式:
1.2或(OR) 运算—|
或逻辑关系:只要在决定某一事件的各种条件中,有一个或几个条件具备时,这一事件就会发生。
逻辑表达式:
1.3非(NOT) 运算—▔
非逻辑关系:事件发生的条件具备时,事件不会发生;事件发生的条件不具备时,事件发生。
逻辑表达式:
1.4与非 运算
先进行与运算再进行非运算
逻辑表达式:
1.5或非 运算
先进行或运算再进行非运算
逻辑表达式:
1.6与或非 运算
先分别进行与运算,再对结果进行或非运算
逻辑表达式:
1.7异或 运算—
当两个输入变量相异时,结果为1,否则为0
逻辑表达式:F=AB=
1.8同或 运算—⊙
当两个输入变量相同时,结果为1,否则为0
逻辑表达式:F=A⊙B=
3.逻辑代数的公式和规则
积之和/和之积
逻辑函数都可以用积之和/和之积的方式表示
例:
和之积(输出值为1的逻辑值):
积之和:
反演律:
反演规则: “.”与“+”互换
“0”与“1”互换
原变量与反变量互换
例:
对偶规则: “.”与“+”互换
“0”与“1”互换
例:
常用公式
1.(吸收律)
对偶式:
2.
对偶式:
3.
对偶式:
4.(消去多余项)
对偶式:
5.
对偶式:
4.逻辑函数的标准表达式
最小项表达式—真值表中,输出为1的积之和的形式
例:
积之和:
最小项表达式:
最大项表达式—真值表中,输出为0的和之积的形式
如上:
和之积:
最大项表达式:
5.逻辑函数的简化
5.1公式简化法
5.1.1合并项法
5.1.2吸收法
5.1.3消去法
5.1.4配项法
利用将某一乘积项展开为两项,或添加某乘积项,再与其它乘积项进行合并化简。
5.2卡诺图简化
5.2.1卡诺图的构成
5.2.1卡诺图的简化
(1)几何相邻包括相接紧挨着相对任一行或一列的两头;相重—对折起来后位置重合。
(2)从各卡诺图可以看出,在n个变量的卡诺图中,能从图形上直观、方便地找到每个最小项的n个相邻最小项。
(1)2个相邻的最小项可以合并,消去1个取值不同的变量。
(2)4个相邻的最小项可以合并,消去2个取值不同的变量。
(3)8个相邻的最小项可以合并,消去3个取值不同的变量。
5.2.3卡诺图合并最小项的原则(画圈的原则)
(1)尽量画大圈,但每个圈内只能含有2(=0,1,2,3.…)个相邻项。要特别注意对边相邻性和四角相邻性。
(2)圈的个数尽量少
(3)卡诺图中所有取值为1的方格均要被圈过,即不能漏下取值为1的最小项。
(4)允许重复圈,但在新画的包围圈中至少要含有1个未被圈过的1方格否则该包围圈是多余的。
(5)孤立的最小项单独包围。