python AIOT教程一1.必备多元函数微分学理论基础

本篇博客主要给大家介绍一下,在学习python AIOT方向中,必备的数学基础知识。

一.多元函数

请添加图片描述
定义设D为一个非空的n 元有序数组的集合, f 为某一确定的对应规则。

在这里插入图片描述 若对于每一个有序数组,通过对应规则 f,都有唯一确定的实数 y 与之对应,则称对应规则 f 为定义在 D 上的n 元函数。记为在这里插入图片描述 。 变量 在这里插入图片描述称为自变量;y称为因变量。
当n=1时,为一元函数,记为y=f(x),x∈D;
当n=2时,为二元函数,记为z=f(x,y),(x,y)∈D,图象如下图。
二元及以上的函数统称为多元函数。
请添加图片描述

二.偏导数

请添加图片描述
偏导数,可以看作是导数的推广,对于多元函数来说,我们把其他的自变量固定不动,看成是常量,我们对其中的某一个变量求导数的话,那就是偏导数了,只对一个变量求导数!请添加图片描述
几何意义上面来说就是在某个方向上对原函数来切一下,再去求导,就是偏导数。举例说明:
请添加图片描述
对变量x求偏导数,其中y是常量
请添加图片描述
对变量y求偏导数,其中x是常量
请添加图片描述

三.高阶偏导数

对于多元函数来说,若其一阶偏导数仍是关于每个自变量的函数,并且一阶偏导数对每个自变量的偏导数也存在,则说这个多元函数具有二阶偏导数。以此类推,有三阶偏导数,四阶偏导数等,我们把一阶以上的偏导数称为高阶偏导数。

如果定义在开集 G 上的函数的一阶偏导数关于某个变量可偏微分,就能作出二阶偏导数。同样能定义n阶偏导数。我们即将一阶以上的偏导数称为高阶偏导数。将这些高阶偏导数记为:
请添加图片描述
举例
请添加图片描述

四.梯度

请添加图片描述

定义:
设二元函数在这里插入图片描述在平面区域D上具有一阶连续偏导数,则对于每一个点P(x,y)都可定出一个向量在这里插入图片描述 ,该函数就称为函数 在点P(x,y)的梯度,记作gradf(x,y)或在这里插入图片描述,即有:

gradf(x,y)= =在这里插入图片描述

其中 在这里插入图片描述称为(二维的)向量微分算子或Nabla算子,在这里插入图片描述

在这里插入图片描述是方向l上的单位向量,则

在这里插入图片描述
在这里插入图片描述

由于当方向l与梯度方向一致时,有

在这里插入图片描述

所以当l与梯度方向一致时,方向导数在这里插入图片描述 有最大值,且最大值为梯度的模,即

在这里插入图片描述

因此说,函数在一点沿梯度方向的变化率最大,最大值为该梯度的模。

通俗一点总结一下:梯度可以看成一元函数的导数,对于多元函数来说就是偏导数而已。
多元函数的梯度公式:请添加图片描述

五.雅可比矩阵

相信很多人没有接触过这个矩阵,其实这个是比较好理解的,雅可比矩阵就是由一阶偏导数构成的矩阵,发明它的目的主要是为了简化求导公式,对多元的复合函数求导,如果我们用雅可比矩阵来计算的话,它会写起来非常简洁,这在人工神经网络反向推导的过程中往往会看到的。

y=f(x), 其中 x 是 n 维向量表示有 n 个未知数即 n 个自变量,y是k维的向量表示函数对应关系计算返回k个因变量。这句话理解不了不要紧,静下心来,我们继续往后看。

Yi = f(Xi) ,其中每个Xi 和每个 Yi 都是相关的,也就是每个 Yi 是单独从 Xi 映射过来的函数。

那么函数f(X)的雅可比矩阵就是每个Yi 分别对每个 Xi 求偏导,然后构成的矩阵就叫雅可比矩阵:
在这里插入图片描述

可能看到这里还是有点迷惑,不知道怎么用这个玩意,我们举几个例子,然后再回过头看,就会有不一样的理解。

示例一
在这里插入图片描述
示例二
在这里插入图片描述
示例三
在这里插入图片描述
相信大家对雅可比矩阵有了一个全面的认识。

六.Hessian矩阵

Hessian矩阵类似于雅可比矩阵,Hessian矩阵是对于一个多元函数来说的,它就相当于一元函数的二阶导数。
有一个关于x 的n元 函数,自变量为 x 1 , x 2 , x 3   , . . . , x n , {x}_{1},{x}_{2},{x}_{3\, ,...},{x}_{n}, x1,x2,x3,...,xn,那么Hessian矩阵为:
在这里插入图片描述
举个例子:
在这里插入图片描述
从上面例子我们引出来一个问题:什么是正定呢?矩阵的正定是如何判断呢?

答案就在下一个知识点极值判别法则

七.极值判别法则

7.1、极值判定条件
对于一元函数,f(x) = x2的一阶导数等于0处有极值,当f(x)的二阶导数大于0时是极小值,当f(x)的二阶导数小于0时是极大值,可以参考f(x) = x2这个函数,其二阶导数为2,大于0,那么该函数是凸函数。
在这里插入图片描述
对于多元函数 ,首先f(x)的一阶导数等于0,这点是驻点,那它就可能是极值点,它是极大值还是极小值或者不是极值怎么判定呢?

看Hessian矩阵,在f(x)的一阶导数等于0处,就是驻点处。

  1. 如果Hessian矩阵是正定的话,函数在该点有极小值
  2. 如果Hessian矩阵是负定的话,函数在该点有极大值
  3. 如果Hessian矩阵不定,函数在该点不是极值。

那么怎么判断Hessian矩阵正负定呢?

7.2、实对称矩阵的正负定判断
实对称矩阵A正定负定判断条件:
在这里插入图片描述
我们用代码演示一下:
实对称矩阵A负定,代码如下:

import numpy as np
A = np.array([[-2,-3,-1],
			 [-3,-6,-4],
			 [-1,-4,-5]])
v = np.array([3,5,6])
print('给定向量任意向量v',v)
print('求解矩阵A正定判定条件结果是:'v.dot(A).dot(v))
'''
给定向量任意向量v:[3,5,6]
求解矩阵A正定判定条件结果是: -714
'''

但是这样不太容易判断,我们还可以根据特征值正负去判断矩阵正定与否:

  1. 矩阵A的特征值全部大于0,那么矩阵A为正定矩阵;
  2. 矩阵A的特征值全部小于0,那么矩阵A为负定矩阵;

实对称矩阵A负定,特征值代码如下:

import numpy as np
A = np.array([[-2,-3,-1],
			 [-3,-6,-4],
			 [-1,-4,-5]])
w,v = np.linalg.eig(A)
print('矩阵A的特征值特征向量是:')
print(w,v)
'''
矩阵A的特征值特征向量是:
 [-10.54287655  -0.03922866  -2.41789479]  特征值全部为负数

 [[ 0.32798528  0.73697623 -0.59100905]
 [ 0.73697623 -0.59100905 -0.32798528]
 [ 0.59100905  0.32798528  0.73697623]]
'''

那存在不存在特征向量有大与0的,也有小于0的呢? 肯定是存在的,我们称它为不定。那存在不存在特征向量大于等于0的,或者小于等于0的呢? 肯定也是存在的,它们我们称为半正定,或者半负定。

什么是半正定,什么是半负定呢?留个疑问,我们学完下面的二次型就明白啦。

八.二次型

8.1、二次型定义
二次型(quadratic form):n个变量的二次多项式称为二次型,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式。

二次型就是纯二次项构成的一个函数。

因为二次函数(方程)的二次部分最重要,为了发表研究,我们把含有n个变量的二次齐次函数:
在这里插入图片描述
称为二次型。

8.2、二次型表示

我们可以通过矩阵来进行表示
在这里插入图片描述
二次型通俗表现形式:
在这里插入图片描述
二次型矩阵表示:
在这里插入图片描述
这里我们可以发现与我们之前说的Hessian矩阵的判定正负有点相似。

n个变量的二次齐次函数矩阵表示:
在这里插入图片描述
在这里插入图片描述
8.3、二次型应用
在机器学习中,我们可以根据数据分布进行模型选择:

●如果数据分布是一次型的,那我们就可以选择Logistic Regression、SVM 等分界面为-次型的模型;

●如果据分布是二次型的,我们可以选择naive bayes;

●如果数据分布既不是一次型也不是二次型,那我们可以选择基于决策树的模型,例如GBDT、随机森林等,或者DNN (深度神经网络), 这些模型都高度非线性,表达能力极强理论上可以拟合任意曲线。

8.4、Hessian矩阵与二次型
请添加图片描述
将Hessian矩阵A转换为二次型:
在这里插入图片描述
这个就是我们上一节留的疑问,半正定,半负定矩阵。

正定效果图,如下所示:
在这里插入图片描述
如上图所示,正定有极小值,相反负定有极大值。

半正定效果图,如下所示:

在这里插入图片描述
不定效果图,如下所示:
在这里插入图片描述
我们可以看到,不定没有最大值也没有最小值。

以上仅供理解,大概理解正定,负定,半正定,半负定,不定就可以了。

以上就是机器学习必备的多元函数微分学理论基础的知识点。
bye,bye!

python AIOT教程目录:
1.AIOT介绍
2.python AIOT 必备多元函数微分学理论基础

持续更新中。。。,本人马上就要考研了,可能更新有些慢,敬请理解。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
2020人工智能机器学习创新峰会PPT汇总,24个专题共73份资料。供大家学习参考。 一、测试新趋势 业务数据监控从0-1脱敏 AI在游戏数值与平衡性分析中的应用 微众研发效能改进之数据度量体系 敏捷测试团队转型实践 二、大规模机器学习算法 快速深度学习训练优化算法 三、高效运维 构建全链路数据度量体系、实现DevOps数据驱动闭环 既快又好 DevOps为小红书全员质量保障赋能 浙江移动AIOpsDev运维转型实践-脱敏版 四、工业4.0 AI赋能医药工业发展案例 五、机器学习框架 Volcano加速AI云原生迁移之路 基于分布式机器学习的通信网络资源协同优化和分配 如何做智能边缘计算 六、计算机视觉 深度学习Depth预测--在2d-to-3d项目中的应用 PaddleOCR产业实践之路:如何打造8.6M超轻量模型,一条龙解决训练部署问题 视觉问答与对话系统的新技术进展 视觉技术赋能高效淘宝素材质量巡检 七、架构演进 边缘计算的缘起、价值和实践 AI人脸识别应用技术方案选型与架构落地 爱奇艺 K8S GPU 共享虚拟化实践和优化 菜鸟运力平台架构演进 八、流式计算 美团点评实时计算平台 小米实时计算平台构建 超大规模 Flink 调度优化实践 九、落地"大中台"战略 有赞数据中台降本治理 演进式的大规模业务中台体系落地实践 京东B2B中台化实践A2M 十、企业级大数据架构演进 基于阿里云数据湖分析服务DLA快速构建数据湖解决方案 Delta Lake在实时数仓中的应用实践 滴滴数据平台建设实践 美图PB级大数据基础架构升级之路 十一、区块链 新基建下可信区块链网络建设 基于区块链的药品溯源体系建设 区块链+电子合同 确保效力 放飞效率 千里之堤溃于蚁穴 十二、数据库的未来 PB级结构化日志数据的高效处理 TBase多中心多活应用实践 使用 TiDB 列存引擎进行实时数据分析 十三、图神经网络、知识图谱 知识图谱在内容安全中的实践应用 百度事件图谱技术与应用 华为云知识图谱平台技术及案例分享 知识图谱在腾讯AI医疗的应用实践-脱敏版 十四、推荐系统 多模态内容理解在推荐系统的应用 小红书推荐系统的架构演进 知乎搜索排序模型实践 十五、微服务的2.0时代 如何优雅的步入微服务2.0时代(脱敏版) 微服务之后,分层架构该如何演进 微服务网关(2) 十六、云原生构建之路 从0到1构建云原生智能金融电商-脱敏版 Tars与k8s如何结合,助力阅文海外业务 云原生应用性能优化之道 Dubbo 基于 MOSN 在 Service Mesh 场景下的落地实践-曹春晖 十七、智慧金融 智慧金融的新基础设施-数据中台-A2M 自然语言处理在金融实时事件监测和财务快讯生成中的应用 联邦学习在金融安全领域的研究与应用 人工智能Fairness在金融行业的研究:基于Pipeline的方法 十八、智能数据分析 闲鱼纳米镜--人人都是数据分析师 大数据分析系统在游戏领域的实践 十九、智能语音 智能语音交互 面向自然交互的多模态人机交互解决方案 二十、AI基础设施建设 飞桨开源模型库与行业应用 基于飞桨的深度学习全流程开发实战 NLP定制化训练实践1.3 二十一、AIOps AItest 百度AIOps解决方案及行业落地案例--脱敏 邱化峰-使用AI从业务测试走向业务验证 面向人工智能的测试体系建设 - 脱敏 二十二、FinTech 恒生银行DevOps实践和探索 数字化转型:从内部一体走向内外一体 基于区块链的隐私支付分析与比较 二十三、IOT 数字化转型升级 AIoT在工业水处理中的应用和实践及对永续发展的意义 二十四、NLP 阿里小蜜DeepQA算法平台化大规模提效实践 多模态内容生成在京东商品营销中的探索与实践

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wzyannn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值