隐式反馈的去噪,模型取得巨大提升

本文探讨了隐式反馈在推荐系统中的噪声问题,提出自适应去噪训练(ADT)策略,包括截断损失和加权损失,以减少错误正向交互的影响。ADT在多个推荐器和数据集上实验,显著提升了模型性能。
摘要由CSDN通过智能技术生成

Denoising Implicit Feedback for Recommendation!

v2-e4ed319a68ef5b17a53945d5cf1a2780_b.jpg

本篇内容细节会涉及的更多一些,大家可以再次温故一遍,个人觉得非常有意思的一篇工作。

现实推荐问题的建模中,我们会使用大量的隐反馈来缓解了数据稀疏的问题,不过缺点也非常明显:

  • 隐反馈在反映用户的实际满意度方面不够清晰。

例如,在电子商务中,很大一部分点击并不能转化为购买,许多购买最终都会得到负面评价。

隐反馈的噪声特性目前研究的工作相对较少。本文则探讨了去噪内隐反馈推荐训练。我们发现:

  • 含噪声的内隐反馈会产生严重的负面影响,即拟合含噪声的数据会阻碍推荐者学习实际的用户偏好。

我们的目标是识别和剪枝噪声交互,提高推荐训练的有效性。通过观察正常的推荐器训练过程,我们发现噪声反馈在早期阶段通常具有较大的损失值。受此启发,我们提出了一种新的训练策略,称为自适应去噪训练(ADT),它能自适应地剪除训练过程中的噪声干扰。具体来说,我们设计了两种自适应损失公式:

  1. 截断损失,即在每次迭代中丢弃具有动态阈值的大损失样本;
  2. 加权损失,自适应地降低大损失样本的权重。

我们在广泛使用的binary cross-entropy loss使用,并在三个有代表性的推荐器上测试了所提出的ADT策略,并取得了很好的的效果。

v2-1c0056483800ca9a246b6ab62257aacb_b.jpg

我们令:

v2-bc5558002b65abe6bb9eca5247cc9187_b.jpg

实践中,因为噪音交互的存在,将会误导模型对于用户喜好的学

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值