"轻量"且"优秀"的序列推荐模型

self-attention已经广泛使用在序列化推荐中,但是存在复杂度较高且过度参数化的问题,并且由于隐式位置编码的缘故,会使模型在对items之间的关系错误建模。这篇来自微软的论文《Lighter and Better: Low-Rank Decomposed Self-Attention Networks for Next-Item Recommendation》提出了LightSans去解决这些问题。该模型把用户历史行为序列映射成潜在的兴趣,通过这种方式在线性时间和空间“限制”了用户历史行为序列的长度,缓解了过度参数化的问题。

LightSANs

LightSANs假设用户历史上有过的交互的items可以被分类为不超过k类(k是一个很小的定值),基于这个假设,用户历史行为的items都需要和k个潜在的兴趣做交互(论文里叫item-to-interest),避免了item之间的交互,使得模型参数变少。然后该模型还提出了decoupled位置编码去描述位置直接的相关性。关于LightSANs的细节见下图:

v2-a92afb8dd7abcf403b9e5cda799013ad_b.jpg

Item-to-Interest Aggregation:

有了每个items可以归类为k个兴趣中的一个的假设,我们就可以用一个可学习的function,把n*d的序列映射成k*d,如下公式所示:

v2-3578e6b60b9fa8851b2fe5d82dff4815_b.jpg

v2-333e7a440bd8791dfef298467e62d5ea_b.jpg

v2-404ee09e6a57064b4f53ca2111af381c_b.jpg

v2-21191584ce2875ad68417f2ae9e593e1_b.jpg

v2-2afe1519bae934095f2fb3e7dc27463e_b.jpg

v2-a77dd9b3b72f1b52d76199e9cf45217c_b.jpg

通过这种方式把item集合聚成k个向量表达,有效的降低了attention矩阵的大小。因为兴趣更能表达用户的倾向,attention的weights就能更精确的描述不常见的items。

Item-to-Interest Interaction:

简单来说,就是把self-attention中的K和V替换成我们上一步聚合的k个兴趣,如下式所示:

v2-54efdc3f3cfc76d8866714cf09c35a9d_b.jpg

当然,这里也用了multi-head,i表示head ID。

Decoupled Position Encoding:

传统的position embedding,就是每个位置的item embedding直接加上position embedding,然后描述两个位置item的关系如下式:

v2-859fce921311421d1fafe1192f8e01e4_b.jpg

展开就是:

v2-b078aeb9294f2e1a9d5b2249b6ad77c2_b.jpg

论文提到上式的最后两项并没有那么合理,描述item到position的关系是有问题的,限制了模型的挖掘序列关系的能力.所以该文提出了下式对序列之间位置的关系进行编码:

v2-d3d6a0176cc674452da0fe01f94f7006_b.jpg

v2-d69b30aeab5809dc48618d9780d21f9a_b.jpg

v2-ce7c565430cd0289b7b886248f3c5289_b.jpg

v2-f92f58a5adecccf9bab7c91cfd1fd7fe_b.jpg

v2-0b0420ed7fb6bf2ad840222e689deb5f_b.jpg

这样做序列位置之间的关系就被显式的指定,避免了对item-position直接关系的编码,提高了模型的表达能力.loss函数也很简单,就是用的交叉熵损失.

实验

从实验上看,该模型不仅效果好,性能还和彪悍,同时也节约内存.

v2-e80fb3f25f8360aa7e1ab1e6b418d590_b.jpg

参考文献

1、Lighter and Better: Low-Rank Decomposed Self-Attention Networks for Next-Item Recommendation

"轻量"且"优秀"的序列推荐模型

v2-63a670f3b226d698d04bc35e051f4a3f_b.jpg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值