【序列建模】推荐广告中的序列建模

该博客探讨了在推荐广告中如何利用用户历史行为序列建模以捕捉用户兴趣。主要内容包括用户兴趣的广泛性刻画、序列内容时间跨度、用户行为属性的考虑,以及多种行为序列的组合建模方法。通过对Pooling、RNN、Attention和胶囊网络等方法的分析,阐述了序列建模在推荐系统中的重要性和挑战。
摘要由CSDN通过智能技术生成

【序列建模】推荐广告中的序列建模

最近在腾讯的实习中做的是行为序列推荐相关的工作,所以开个专题对行为序列推荐做一个汇总整理。一般推荐系统做特征工程,特征会有如下几种:

  • 用户侧特征:比如用户id、性别、地理位置、年龄等比较普遍的信息,还有一些是结合你业务的特征,我做的游戏推荐,就会有用户游戏等级、游戏登陆时长、喜欢的游戏模式等特征。
  • Item侧特征:比如item-id,item类型(视频?图文?具体结合业务)、item历史ctr、item的标签。除了这些比较普遍的特征以外,很多组也有有专门的内容理解团队,给item打上基于内容理解的tag或者embedding,短视频推荐中比较普遍的是对短视频标题的NLP理解和封面图中CV侧的理解。
  • 场景特征:比如用户的点击发生在随便看看、搜索场景、广告推荐中,同一种行为可能代表了不同的含义。
  • 用户历史行为序列信息:用户历史行为序列能够反映一定时间范围内用户的一个兴趣变化,比如用户昨天买了一台电脑,那我们能够预计他还会配上鼠标、键盘,我们就可以给他推荐这些商品。常见的用户行为序列包括了点击序列、点赞/收藏/下单序列等;

在这里插入图片描述

而在推荐广告中,历史行为序列是非常重要的特征。在序列建模中,主要任务目标是得到用户此刻的兴趣向量(user interest vector)。

用户历史行为序列建模主要工作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值