【序列建模】推荐广告中的序列建模
最近在腾讯的实习中做的是行为序列推荐相关的工作,所以开个专题对行为序列推荐做一个汇总整理。一般推荐系统做特征工程,特征会有如下几种:
- 用户侧特征:比如用户id、性别、地理位置、年龄等比较普遍的信息,还有一些是结合你业务的特征,我做的游戏推荐,就会有用户游戏等级、游戏登陆时长、喜欢的游戏模式等特征。
- Item侧特征:比如item-id,item类型(视频?图文?具体结合业务)、item历史ctr、item的标签。除了这些比较普遍的特征以外,很多组也有有专门的内容理解团队,给item打上基于内容理解的tag或者embedding,短视频推荐中比较普遍的是对短视频标题的NLP理解和封面图中CV侧的理解。
- 场景特征:比如用户的点击发生在随便看看、搜索场景、广告推荐中,同一种行为可能代表了不同的含义。
- 用户历史行为序列信息:用户历史行为序列能够反映一定时间范围内用户的一个兴趣变化,比如用户昨天买了一台电脑,那我们能够预计他还会配上鼠标、键盘,我们就可以给他推荐这些商品。常见的用户行为序列包括了点击序列、点赞/收藏/下单序列等;
而在推荐广告中,历史行为序列是非常重要的特征。在序列建模中,主要任务目标是得到用户此刻的兴趣向量(user interest vector)。