国外相关论文,持续更新
零售需求预测:多变量时间序列的比较研究
零售业的准确需求预测是一个关键的决定因素 财务业绩和供应链效率。随着全球市场变得 互联程度越来越高,企业正在转向高级预测 模型以获得竞争优势。然而,现有文献主要关注 对历史销售数据,忽视宏观经济的重要影响 消费者消费行为的条件。在这项研究中,我们通过以下方式弥合了这一差距 利用宏观经济变量丰富客户需求时间序列数据, 例如消费者物价指数 (CPI)、消费者信心指数 (ICS) 和 失业率。利用这个全面的数据集,我们开发和 比较各种回归和机器学习模型以预测零售需求 准确。