随着电子商务和自动化技术的迅猛发展,条形码和二维码已经成为现代商业中不可或缺的一部分。它们被广泛应用于商品管理、支付、物流追踪等领域。为了提高条形码和二维码的检测效率和准确性,基于深度学习的检测系统应运而生。本文将详细介绍一个基于YOLOv10的条形码和二维码检测系统,涵盖系统架构、数据集准备、模型训练、UI界面实现等内容,包含对应的代码和data.yaml
文件。
目录
1. 系统设计
1.1. 系统架构
该条形码二维码检测系统主要由以下几个模块组成:
- 数据采集模块:通过摄像头或图像库获取条形码和二维码图像,生成数据集。
- 数据预处理模块:对收集到的图像进行标注、缩放、增强,生成训练数据集。
- 模型训练模块:利用YOLOv10模型进行条形码和二维码的检测模型训练。
- 检测模块:实时检测输入图像中的条形码和二维码。
- UI界面模块:为用户提供友好的操作界面,显示检测结果和相关信息。