1. 引言
随着城市基础设施的不断发展,路面裂缝的检测与修复变得愈发重要。及时发现和修复路面裂缝可以有效提高道路的安全性和耐用性。传统的路面裂缝检测多依赖人工检查,不仅效率低下,还容易受到主观因素的影响。基于深度学习的自动化路面裂缝检测系统可以帮助我们快速、准确地识别和定位路面裂缝,从而提高道路维护的效率。
本文将详细介绍如何构建一个基于YOLOv8的路面裂缝检测系统,包括数据准备、模型训练、用户界面设计以及系统的实际应用。希望通过本篇博客,读者能够全面了解这一系统的实现过程,并能够独立完成类似项目。
目录
2. 项目概述
我们的目标是构建一个基于YOLOv8的路面裂缝检测系统,系统将包括以下几个主要部分:
- 数据集准备:收集和标注路面裂缝检测相关的数据集。
- 模型训练:使用YOLOv8对数据进行训练,完成路面裂缝检测的模型构建。
- UI设计与实现:通过Tkinter库设计用户界面,实现图像加载和实时检测功能。
- 系统部署:将训练好的模型集成到应用中,进行实际测试。