前言
电塔是电力输送网络中的重要基础设施,任何电塔的缺陷都可能导致严重的电力中断,甚至威胁到人员的安全。随着电力行业对设备管理和维护需求的不断增长,传统的人工检测方法逐渐暴露出效率低、准确性差等问题。为了解决这一问题,深度学习技术,特别是目标检测算法,成为了电塔缺陷自动检测的理想选择。
本文将介绍如何基于深度学习和YOLOv5模型,开发一个电塔缺陷检测识别系统。通过该系统,能够自动化地识别电塔图片中的缺陷,减少人工检测的时间和错误率,提高电塔设备的维护效率和安全性。
目录
本文将详细阐述以下几个方面:
- 系统架构与设计
- 数据集准备
- YOLOv5模型的选择与应用
- UI界面设计与实现
- 完整代码与实现过程
- 系统的测试与优化