引言
在农业生产中,病害对作物的影响是一个长期而严峻的问题。对于辣椒等农作物而言,及时检测并处理病害可以显著提高产量和质量,减少损失。传统的辣椒病害检测方法通常依赖于人工观察,既费时又容易受到人为因素的影响。近年来,深度学习技术在图像处理和模式识别中的应用,为农作物病害检测提供了强有力的技术支持,尤其是目标检测模型YOLO(You Only Look Once)在农业领域的应用,取得了显著的进展。
本博客将详细介绍如何使用YOLOv5深度学习模型和自定义数据集,开发一个辣椒病害检测识别系统。该系统能够自动识别辣椒叶片上的病害类型,并通过一个图形化用户界面(GUI)显示结果。本文将涉及从数据收集、数据预处理、模型训练到系统实现的各个步骤,目标是帮助读者全面了解基于深度学习的辣椒病害检测技术。
目录
一、项目概述
本项目的目标是构建一个基于YOLOv5深度学习模型的辣椒病害检测系统。系统的主要功能包括:
- 数据集准备:收集和标注辣椒病害图像。
- 模型训练:使用YOLOv5模型进行训练,识别辣椒病害的不同种类。
- 检测与识别