引言
血液细胞的检测与计数是医学诊断中不可或缺的一部分,广泛应用于血液病的诊断、白血病的监测、贫血的评估等领域。传统的血细胞计数方法依赖人工观察显微镜图像,不仅效率低、容易出错,而且难以满足大规模样本的处理需求。随着深度学习技术的飞速发展,尤其是目标检测领域,利用深度学习模型进行血细胞的自动检测与计数逐渐成为主流方案。
在本博客中,我们将介绍如何基于深度学习算法,特别是YOLO(You Only Look Once)系列模型,构建一个自动化的血细胞智能检测与计数系统。我们将包括数据集的准备、YOLOv5/v6/v7/v8模型训练、UI界面设计、以及如何通过实时图像流展示检测与计数的结果。最终目标是实现一个能够高效且准确地识别和计数血细胞的智能系统。
目录
一、系统概述
1.1 系统需求
该血细胞智能检测与计数系统需要完成以下几个关键任务:
- 血细胞检测:识别血液图像中的各种类型的细胞,如红细胞、白细胞、血小板等。
- 血细胞计数:实时统计每种血细胞的数量。
- 实时反馈:能够快速处理图像并显示实时结果,支持实验室环
订阅专栏 解锁全文
456

被折叠的 条评论
为什么被折叠?



