1. 引言
车牌识别(License Plate Recognition,LPR)是一项在智能交通系统、停车场管理、道路监控等领域有着广泛应用的技术。它主要分为两个步骤:车牌检测和车牌号码识别。车牌检测主要负责在图像中定位车牌,而车牌号码识别则是从车牌图像中提取并识别车牌号码。
为了实现高效、准确的车牌识别,近年来深度学习技术,特别是卷积神经网络(CNN)和目标检测网络(如YOLO)在车牌识别领域取得了显著的突破。本篇文章将结合YOLOv5模型进行车牌检测,并通过OCR技术实现车牌号码的识别,最后通过Streamlit构建UI界面,展示车牌识别结果。
2. 系统架构
车牌识别系统包括以下几个模块:
- 数据集准备与标注:收集并标注车牌数据集,供YOLOv5训练使用。
- 车牌检测:利用YOLOv5进行车牌区域的定位。
- 车牌号码识别:使用OCR技术识别车牌上的字符。
- UI界面:使用Streamlit构建一个交互式Web界面,实时展示车牌检测和号码识别的结果。