1. 引言
随着智能农业和物联网技术的飞速发展,深度学习已成为农业生产中的重要工具。在果蔬检测领域,基于深度学习的技术被广泛应用于果蔬的新鲜度、质量和成熟度检测中。番茄作为一种全球广泛种植的蔬菜,其新鲜度检测对农业产业链中的收获、存储、运输和销售等环节具有重要意义。传统的番茄新鲜度检测方式依赖人工检查,不仅效率低下,还可能存在较大的误差。基于深度学习的番茄新鲜度检测系统能够通过计算机视觉技术,对番茄的外观进行快速、准确的评估,从而为农业生产和供应链管理提供强有力的支持。
本文将介绍如何基于深度学习技术,使用YOLO(You Only Look Once)目标检测算法来实现番茄新鲜度的自动检测系统。我们将详细讲解数据集的准备、YOLO模型的训练与优化、UI界面的设计,以及系统实现的完整代码。通过本系统,用户能够通过摄像头实时检测番茄的外观,判断其新鲜度,进而提供科学的存储和销售建议。
2. 项目目标与背景
2.1 项目背景
番茄是全球最常见的蔬菜之一,且其品质直接影响消费者的购买决策。番茄的新鲜度检测不仅仅是对番茄外观的分析,还包括对色泽、纹理、形状、果皮完整性等多个因素的综合评估。传统的人工检查不仅效率低,而且往往存在主观性,容