一、项目背景与研究意义
在现代工业制造中,产品质量的高标准要求推动了自动化视觉检测的发展,特别是在对表面缺陷(如划痕、裂缝、污染、缺口等)的检测中尤为重要。传统的人工检测方式效率低、主观性强,难以满足高速、高精度的工业需求。因此,基于深度学习的图像缺陷检测方法受到广泛关注。
MVTec AD 数据集 是工业视觉检测领域最具代表性的开源数据集之一,涵盖多种工业产品(例如电路板、金属、瓷砖等)的正常图像和缺陷图像。本文将基于 YOLOv8 模型实现对该数据集中的缺陷自动检测与分类,同时集成一个 图形用户界面(UI) 实现实时检测可视化,最终形成一个完整的工业缺陷检测系统。
二、模型选择:YOLOv8 简介
YOLO(You Only Look Once)系列是目前最先进的实时目标检测算法之一,YOLOv8 是由 Ultralytics 发布的最新版,具有如下优点:
- 速度快,精度高;
- 支持 anchor-free 架构;
- 支持实例分割和图像分类</