一、前言
在自动驾驶、交通管理和智能监控等领域,车辆检测和分类是至关重要的一部分。通过计算机视觉技术,我们能够识别并分类不同类型的交通工具,如轿车、卡车和厢式车。这种技术广泛应用于交通监控、自动驾驶、车辆计数、违章检测等任务。YOLOv8(You Only Look Once v8)是当前最先进的目标检测算法之一,其高效性和准确性使其在实时检测任务中表现优异。
在本文中,我们将介绍如何利用CASS(Car, Van, and Truck Dataset)数据集,通过YOLOv8模型进行车辆检测,并结合一个简单的UI界面展示实时检测结果。我们将深入探讨数据集的使用、YOLOv8模型的训练过程以及如何在应用中集成UI界面,最终实现车辆的实时检测与展示。
二、CASS数据集介绍
2.1 数据集概述
CASS(Car, Van, and Truck Dataset)是一个专为车辆检测和分类任务设计的数据集。它包含了来自各种环境下的车辆图像,数据集的目标是提供一个多样化的车辆图像集,供深度学习模型进行训练和测试。数据集包括三个主要类别:
- 车(Car) :普通的轿车,包括不同类型和品牌的私家车。
- 卡车