1. 引言
目标检测是计算机视觉领域中的一个重要任务,它不仅需要在图像中识别物体,还需要确定物体的位置和类别。YOLO(You Only Look Once)是近年来最流行的目标检测算法之一,因其优秀的检测速度和精度广泛应用于实时目标检测任务。
在本篇博客中,我们将使用YOLOv5进行CIFAR-100数据集的目标检测,并展示如何使用PyQt5构建UI界面,实时展示检测结果。CIFAR-100数据集包含100个不同类别的物体,涵盖了从日常用品到动物等多个领域,挑战性较高,适合用于训练更加复杂和精细的目标检测模型。
我们将详细介绍:
- CIFAR-100数据集概述
- YOLOv5模型原理及训练
- 数据预处理与标签生成
- 使用YOLOv5训练目标检测模型
- 使用PyQt5构建UI界面展示检测结果
- 完整代码实现与分析
- 结果展示与评估
2. CIFAR-100数据集概述
CIFAR-100是由加拿大多伦多大学的Alex Krizhevsky等人发布的图像分类数据集,它是CIFAR-10的扩展版本,包含了100个不同的类别。每个类别有600张32x32的彩色图像,图像内容涵盖了物体、动物等多种类型。每张图像属于其中的一个类别。
CIFAR-100的类别包括