1. 引言
目标检测是计算机视觉中的一项基础任务,其目标是识别图像中各个目标的类别和位置信息。在众多的目标检测算法中,YOLO(You Only Look Once)因其高效性和准确性成为了许多应用场景的首选模型。YOLOv5作为YOLO系列算法的最新版本,具有更加优化的性能和用户友好的特性,广泛应用于实时目标检测任务。
在本篇博客中,我们将使用YOLOv5进行UCSD Pedestrian数据集的行人检测,并展示如何通过PyQt5构建UI界面,实时展示检测结果。UCSD Pedestrian数据集是一个行人检测的经典数据集,主要用于行人检测算法的评估。通过本篇博客的学习,您将能够了解如何使用YOLOv5进行行人检测模型的训练与部署,并构建一个交互式的UI界面来展示检测结果。
2. UCSD Pedestrian数据集概述
UCSD Pedestrian数据集是由加利福尼亚大学圣地亚哥分校(UCSD)发布的一个行人检测数据集,常用于行人检测和追踪算法的研究。该数据集包含来自多个不同摄像头拍摄的视频片段,重点关注行人在城市环境中的运动。
UCSD Pedestrian数据集包含的主要特征:
- 类别:1个类别,行人(Pedestrian)。</