FabricDefectDetector:基于YOLOv10的纺织物瑕疵检测系统

一、项目背景与研究价值

在现代纺织工业中,布料的质量直接影响产品的市场竞争力。传统的人工检测方法效率低下,且容易受到疲劳和主观因素的影响,导致漏检和误检。随着深度学习技术的发展,基于视觉的瑕疵检测方法逐渐成为主流。本文将介绍如何使用YOLOv10模型结合PyQt5界面,构建一个纺织物瑕疵检测系统,实现对布料上污渍、破洞、织造缺陷等的实时检测。


二、数据集准备

2.1 推荐数据集来源

为了训练和评估纺织物瑕疵检测模型,需要准备包含各种瑕疵的布料图像数据集,并标注其位置。以下是一些公开可用的数据集:

1)Fabric Defect Dataset - Kaggle
  • 包含3类瑕疵图像:horizontal、vertical和holes,每个瑕疵图像都有对应的掩码图像。
  • 数据集链接:Fabric Defect Dataset - Kaggle
2)Textile Defect Detection - Kaggle
  • 包含32x32的图像块
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值