一、项目背景与研究价值
在现代纺织工业中,布料的质量直接影响产品的市场竞争力。传统的人工检测方法效率低下,且容易受到疲劳和主观因素的影响,导致漏检和误检。随着深度学习技术的发展,基于视觉的瑕疵检测方法逐渐成为主流。本文将介绍如何使用YOLOv10模型结合PyQt5界面,构建一个纺织物瑕疵检测系统,实现对布料上污渍、破洞、织造缺陷等的实时检测。
二、数据集准备
2.1 推荐数据集来源
为了训练和评估纺织物瑕疵检测模型,需要准备包含各种瑕疵的布料图像数据集,并标注其位置。以下是一些公开可用的数据集:
1)Fabric Defect Dataset - Kaggle
- 包含3类瑕疵图像:horizontal、vertical和holes,每个瑕疵图像都有对应的掩码图像。
- 数据集链接:Fabric Defect Dataset - Kaggle
2)Textile Defect Detection - Kaggle
- 包含32x32的图像块