无人便利店监控系统 — 基于YOLOv8的商品盗损及未支付行为检测

一、引言

无人便利店作为零售行业新兴趋势,凭借其无人值守、高效便捷的特点,吸引了众多投资者与技术开发者的关注。其核心挑战在于如何实现对商品的智能监控,尤其是防止商品盗损和未支付行为。传统人工监控方式成本高且效率低下,因此基于计算机视觉的自动监控成为突破口。

本文将详细介绍如何基于最新的YOLOv8目标检测算法,结合实际无人便利店监控需求,设计并实现一个智能商品盗损和未支付行为检测系统。文中将涵盖系统整体设计思路、数据集准备、模型训练、推理过程、UI界面设计以及完整的代码实现,适合有一定深度学习基础的开发者参考学习。


二、系统设计概述

2.1 系统目标

  • 实时检测顾客是否存在商品盗取行为(拿起商品未支付即离开)
  • 识别未支付商品的类别和数量
  • 统计商品被拿取次数,辅助分析潜在盗损风险
  • 可视化显示检测结果,便于无人值守监控管理

2.2 核心技术选择

  • YOLOv8:最新版本的YOLO系列,具备极佳的检测速度和精度,支持实时视频流分析。
  • Python + PyTorch:模型训练与推理框架。
  • Open
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值