一、引言
无人便利店作为零售行业新兴趋势,凭借其无人值守、高效便捷的特点,吸引了众多投资者与技术开发者的关注。其核心挑战在于如何实现对商品的智能监控,尤其是防止商品盗损和未支付行为。传统人工监控方式成本高且效率低下,因此基于计算机视觉的自动监控成为突破口。
本文将详细介绍如何基于最新的YOLOv8目标检测算法,结合实际无人便利店监控需求,设计并实现一个智能商品盗损和未支付行为检测系统。文中将涵盖系统整体设计思路、数据集准备、模型训练、推理过程、UI界面设计以及完整的代码实现,适合有一定深度学习基础的开发者参考学习。
二、系统设计概述
2.1 系统目标
- 实时检测顾客是否存在商品盗取行为(拿起商品未支付即离开)
- 识别未支付商品的类别和数量
- 统计商品被拿取次数,辅助分析潜在盗损风险
- 可视化显示检测结果,便于无人值守监控管理
2.2 核心技术选择
- YOLOv8:最新版本的YOLO系列,具备极佳的检测速度和精度,支持实时视频流分析。
- Python + PyTorch:模型训练与推理框架。
- Open