一、项目背景与意义
运动员动作分析是现代智能体育技术的重要组成部分。精准识别和分析运动员的关键动作,如足球中的传球姿势和篮球中的投篮动作,能够辅助教练进行技术指导,提升运动员表现,甚至应用于赛事判定、运动员健康监测等领域。
传统动作识别多依赖复杂的动作捕捉设备或慢速的视频后期分析,难以满足实时性和成本控制的需求。基于深度学习的目标检测技术,特别是轻量高效的YOLO(You Only Look Once)系列,为动作检测和实时分析提供了可行方案。
本项目将基于最新的YOLOv8模型,结合用户友好的UI界面,实现对足球传球和篮球投篮动作的检测与分析,兼顾准确性和实用性。
二、技术选型与方案概述
- 深度学习框架:PyTorch(YOLOv8基于Ultralytics库实现)
- 目标检测模型:YOLOv8(最新一代YOLO模型,支持速度与精度兼备)
- UI界面:Python的
tkinter
或PyQt
实现,结合OpenCV实现摄像头实时展示及动作识别结果叠加 - 数据集:采用公开的