WildAnimalDetector:基于YOLOv10的野生动物闯入检测系统全流程实现

📌 一、项目背景与意义

在自然保护区、农田、边境等区域,野生动物的闯入可能导致生态失衡、农作物损失,甚至引发人兽冲突。传统的监控手段依赖人工巡视,效率低下,且难以及时发现和响应野生动物的入侵行为。

本项目旨在构建一个基于YOLOv10的野生动物闯入检测系统,利用深度学习技术,实现对监控视频中野生动物的实时检测与报警,提升生态保护和人类活动的安全性。


📚 二、核心技术与工具链

分类 技术栈
深度学习 YOLOv10
UI开发 PyQt5
图像处理 OpenCV
训练平台 PyTorch
可视化 matplotlib, seaborn
环境管理 Conda / pipenv

📦 三、数据集准备

3.1 数据集选择

本项目选用以下公开数据集:

  • Snapshot Se
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值