📌 一、项目背景与意义
在自然保护区、农田、边境等区域,野生动物的闯入可能导致生态失衡、农作物损失,甚至引发人兽冲突。传统的监控手段依赖人工巡视,效率低下,且难以及时发现和响应野生动物的入侵行为。
本项目旨在构建一个基于YOLOv10的野生动物闯入检测系统,利用深度学习技术,实现对监控视频中野生动物的实时检测与报警,提升生态保护和人类活动的安全性。
📚 二、核心技术与工具链
分类 | 技术栈 |
---|---|
深度学习 | YOLOv10 |
UI开发 | PyQt5 |
图像处理 | OpenCV |
训练平台 | PyTorch |
可视化 | matplotlib, seaborn |
环境管理 | Conda / pipenv |
📦 三、数据集准备
3.1 数据集选择
本项目选用以下公开数据集:
- Snapshot Se