一、引言
随着零售业数字化转型加速,智能货架商品检测技术正成为提升门店运营效率和消费者购物体验的重要手段。通过自动化检测货架上的商品,零售商可以实时掌握库存状态、促销效果及商品摆放情况,减少人工盘点成本,提升销售转化率。
在计算机视觉领域,目标检测模型(如YOLO系列)凭借其高效和精准,成为货架商品检测的首选方案。本文将详细介绍如何利用最新的YOLOv10模型,结合公开的Grocery Store Dataset(超市货架商品数据集),完成一套高效的货架商品检测系统,并设计一个简洁的UI界面实现实时检测展示。文末附上完整代码,方便读者快速上手。
二、项目概述与目标
本项目旨在搭建一个基于YOLOv10的货架商品检测系统,具体目标如下:
- 数据准备:选用公开的Grocery Store Dataset,包含多类超市货架商品图片及标注。
- 模型训练:使用YOLOv10进行目标检测模型训练,提升商品识别准确率。
- UI界面设计:开发简易界面实现实时商品检测效果的可视化。
- 代码实现:提供端到端的训练与部署代码,方便