1. 引言:手势识别的应用背景
手势识别作为人机交互的关键技术,广泛应用于智能家居控制、虚拟现实(VR)、增强现实(AR)、无障碍辅助、机器人控制及游戏交互等领域。通过准确识别用户手势,实现自然的交互体验,是智能系统发展的重要方向。
本文聚焦于3类基础手势:拳头(fist)、掌心(palm)和竖拇指(thumbs up),利用YOLOv8模型实现快速准确的检测,辅以直观的UI界面展示。
2. 手势识别面临的技术挑战
- 手部姿态复杂:不同角度、光照及遮挡条件影响识别准确性。
- 多样化手势:同一类手势存在细微差异,难以统一建模。
- 背景干扰:复杂环境中手部检测难度增加。
- 实时性能需求:应用场景多要求高实时性。
- 数据集限制:标注精度和样本丰富度直接影响模型表现。