1. 项目背景与意义
随着环保意识的不断提升,垃圾分类已经成为城市管理的重要课题。传统垃圾分类主要依赖人工,效率低且易出错。利用深度学习技术进行垃圾的自动检测与分类,能够大幅提升垃圾回收效率,推动绿色城市建设。
本项目选取塑料(plastic)、纸张(paper)、玻璃(glass)三类垃圾作为目标,实现实时检测与分类,并设计用户友好的UI界面,方便实际应用。
2. 垃圾分类的重要性
- 资源回收:塑料、纸张、玻璃均为可回收资源,分类准确可提高资源利用率。
- 环境保护:垃圾正确分类减少环境污染。
- 经济价值:回收垃圾转化为再生材料,降低生产成本。
3. 相关数据集介绍
3.1 TACO (Trash Annotations in Context)
- 开源垃圾检测数据集,包含多种垃圾类别的图片与标注。
- 图片采集自户外环境,包含丰富的背景复杂度。
- 标注