1. 引言
在军事侦察、安防监控、夜间驾驶等诸多领域,夜视仪技术发挥着不可替代的作用。然而,传统的夜视仪往往只能提供低对比度、模糊的图像,使得目标识别变得困难。本文将介绍如何利用深度学习中的YOLOv10算法,结合目标增强技术,构建一个高效的夜视环境目标检测系统,并提供完整的代码实现和UI界面设计。
2. 系统概述
2.1 系统架构
我们的夜视仪目标增强检测系统主要由以下几个模块组成:
- 图像预处理模块:负责对输入的夜视图像进行增强处理
- 目标检测模块:基于YOLOv10的深度学习模型
- 用户界面模块:提供友好的交互界面
- 数据集处理模块:用于模型训练和验证
2.2 技术选型
- 深度学习框架:PyTorch
- 目标检测模型:YOLOv10
- 图像增强算法:CLAHE、去噪等
- UI框架:PyQt5
- 开发语言:Python
订阅专栏 解锁全文
2797

被折叠的 条评论
为什么被折叠?



