基于YOLOv10的夜视仪目标检测系统:从算法原理到完整实现

1. 引言

在军事侦察、安防监控、夜间驾驶等诸多领域,夜视仪技术发挥着不可替代的作用。然而,传统的夜视仪往往只能提供低对比度、模糊的图像,使得目标识别变得困难。本文将介绍如何利用深度学习中的YOLOv10算法,结合目标增强技术,构建一个高效的夜视环境目标检测系统,并提供完整的代码实现和UI界面设计。

2. 系统概述

2.1 系统架构

我们的夜视仪目标增强检测系统主要由以下几个模块组成:

  1. 图像预处理模块:负责对输入的夜视图像进行增强处理
  2. 目标检测模块:基于YOLOv10的深度学习模型
  3. 用户界面模块:提供友好的交互界面
  4. 数据集处理模块:用于模型训练和验证

2.2 技术选型

  • 深度学习框架:PyTorch
  • 目标检测模型:YOLOv10
  • 图像增强算法:CLAHE、去噪等
  • UI框架:PyQt5
  • 开发语言:Python

3. 数据集准备

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值