1. 引言
随着农业现代化的不断推进,智能农业技术正在改变传统的农业生产方式。果实采摘作为农业生产中的重要环节,长期以来依赖人工劳动,存在效率低、成本高、劳动力短缺等问题。近年来,计算机视觉和深度学习技术的快速发展为果实自动识别与采摘提供了新的解决方案。
本文详细介绍了一种基于YOLOv11深度学习模型的果实成熟度识别系统,并结合机器人采摘技术,实现了一套完整的自动化采摘解决方案。系统包含果实检测、成熟度分类、采摘决策和机器人控制等模块,并通过友好的UI界面实现人机交互。
2. 相关工作
2.1 目标检测技术在农业中的应用
目标检测技术已在农业领域得到广泛应用,主要包括:
- 病虫害检测
- 作物生长监测
- 果实识别与计数
- 杂草识别
与传统机器学习方法相比,基于深度学习的目标检测算法具有更强的特征提取能力和更高的准确率。
2.2 果实成熟度识别研究现状
果实成熟度识别主要基于以下特征:
- 颜色特征:大多数果实成熟过程中颜色变化明显
- 纹理特征:表皮纹理随成熟度变化
- 形状特征:某些果实形状会随成熟度改变
- 大小特征:果实生长过程中的尺寸变化
当前研究方
订阅专栏 解锁全文
1460

被折叠的 条评论
为什么被折叠?



