1. 引言
随着无人机技术的快速发展,无人机在农业监测、交通管理、灾害救援、军事侦察等领域的应用越来越广泛。然而,无人机采集的大量图像和视频数据需要高效准确的目标检测算法来处理。传统的目标检测方法在复杂场景下往往表现不佳,而基于深度学习的方法,特别是YOLO(You Only Look Once)系列算法,因其速度快、精度高而成为无人机目标检测的首选方案。
本文将详细介绍如何使用YOLOv8构建一个完整的无人机目标检测系统,包括数据集准备、模型训练、性能优化以及用户界面开发。我们还将提供完整的代码实现,帮助读者快速复现该系统。
2. 系统概述
2.1 系统架构
我们的无人机目标检测系统主要由以下几个模块组成:
- 数据采集与预处理模块:负责无人机图像的采集和标注
- 模型训练模块:基于YOLOv8的目标检测模型训练
- 推理检测模块:对新的无人机图像进行目标检测
- 用户界面模块:提供友好的交互界面展示检测结果
2.2 技术选型
- 深度学习框架:PyTorch
- 目标检测模型:YOLOv8
- 用户界面:PyQt5
- <
订阅专栏 解锁全文
73

被折叠的 条评论
为什么被折叠?



