回归分析——逻辑回归和线性回归

线性回归

  • 解释:两种或两种以上的变量相互间的依赖关系。可分为一元线性回归和多元线性回归。
  • 特点:因变量是连续性变量。
  • 应用场景:销售额与用户的购买频次相关。
  • 实现步骤:
  1. 分析变量关系,构建回归模型。
  2. 估计模型系数,求解回归模型。
  3. 检验整体模型,确认是否显著。(F检验:验证自变量与因变量的关系,说明回归方程是否显著。)
  4. 检验模型系数,看看系数相关。(t检验:判断每个系数是否显著,一元线性回归省略)。
  5. 拟合优度检验,模型解释能力(决定系数R²)。
  6. 借助回归模型,进行分析预测。

逻辑回归

解释:主要是解决分类问题,因变量是分类型变量(0-1),如:客户是否购买产品,信贷客户是否会发生违约情况等。

应用场景:如客户流失与客户购买某个产品(购买/未购买)是否相关。

步骤:1、方程的显著性检验

           2、系数显著性检验

           3、拟合优度检验

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值