搭建Ubuntu 22.04可视化界面

搭建Ubuntu 22.04的可视化界面通常包括安装图形用户界面(GUI)和桌面环境。在Ubuntu中,常用的桌面环境有GNOME、KDE、XFCE、LXQt等。以下是一些通用的步骤,但请注意,具体步骤可能因桌面环境而异。

执行以下命令,清空缓存,更新您的软件包列表。

sudo apt clean all && sudo apt update

执行以下命令,安装桌面环境所需软件包。包括系统面板、窗口管理器、文件浏览器、终端等桌面应用程序。

sudo apt install gnome-panel gnome-settings-daemon metacity nautilus gnome-terminal ubuntu-desktop

开机默认进入命令行模式或图形用户界面:

sudo systemctl set-default multi-user.target # 命令行
sudo systemctl set-default graphical.target  # 图形用户界面

重启以生效。

  • 暂时回到图形界面,输入命令:startx
  • 从图形界面切换回命令行:Ctrl+Alt+F7
  • 暂时回到命令行模式:Ctrl+Alt+F1
  • 从命令行切换到图形界面:Ctrl+Alt+F7

Ubuntu 22.04作为一款长期支持版本的操作系统,在构建深度学习服务器方面具有显著的优势。为了搭建一台高效稳定的深度学习服务器,您可以按照以下步骤来进行配置: ### 一、硬件准备 对于深度学习任务而言,合适的硬件资源非常重要: 1. **GPU**:选择性能强劲的显卡如NVIDIA RTX系列或Ampere架构的专业级产品; 2. **CPU**:多核高主频处理器有助于加速数据预处理等非并行计算过程; 3. **内存(RAM)**:建议配备64GB以上的RAM以应对大规模模型训练所需的数据读取需求; 4. **存储设备**:SSD硬盘可以提高I/O速度,而大容量HDD可用于保存大量的实验结果文件。 ### 二、操作系统安装与更新 下载最新的[Ubuntu 22.04 LTS](https://ubuntu.com/download/server)镜像,并通过USB启动盘将其安装到您的机器上。完成初始设置之后,首先确保系统的软件包是最新的: ```bash sudo apt update && sudo apt upgrade -y ``` ### 三、驱动程序及CUDA工具链部署 由于大多数现代框架都依赖于 NVIDIA 的 CUDA 技术来利用 GPU 加速运算能力,因此需要先安装对应的驱动和库环境。 #### 安装官方提供的最新版驱动: 访问[NVIDIA官网](http://www.nvidia.cn/geforce/drivers/)获取适用于您所使用的Linux发行板的专有图形驱动。 #### 设置CUDA Toolkit以及cuDNN SDK: 前往[NVIDIA开发者页面](https://developer.nvidia.com/cuda-downloads),根据提示完成相应版本的选择与安装流程;接着再依照说明添加 cuDNN 支持组件即可。 ### 四、Python虚拟环境建立与常用库导入 为了避免影响全局 Python 环境和其他项目之间的相互干扰,推荐创建独立的工作空间用于管理特定项目的依赖项。 ```python # 使用 conda 或 venv 创建新环境 conda create --name dl_env python=3.8 source activate dl_env pip install tensorflow torch torchvision torchaudio scikit-image pandas matplotlib seaborn jupyterlab opencv-python-headless ``` 上述命令会自动从 PyPI 源处拉取包括 TensorFlow 和 PyTorch 在内的主流 DL 库及其附加模块。 ### 五、Jupyter Notebook可视化界面集成 最后别忘了开启远程SSH服务以便随时随地连接至这台高性能工作站开展研究工作的同时还能享受到交互式的编程体验——只需简单地运行`jupyter notebook --generate-config`,然后编辑生成配置文件允许跨域资源共享(CORS),这样就能轻松实现在任意位置浏览本地实例化后的Notebook了! 以上就是关于如何基于 Ubuntu 22.04 构建专属深度学习平台的大致指南啦~希望能帮到正在筹备中的小伙伴们!
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迎风斯黄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值