拉普拉斯方程解决有介质导体球壳问题

一个内径和外径分别为R_2R_3的导体球壳,带电荷Q,同心地包围着一个R_1的导体球(R_1<R_2),使这个导体球接地,求空间各点的电势和这个导体球的感应电荷

 

我们不难发现,球对称性非常强,电势只和半径有关系

所以我们可以假设电势为

\varphi(R)=a+ \frac{b}{R}

我们假设

\varphi_1=a+\frac{b}{R}(R>R_3)

\varphi_2=c+\frac{d}{R}(R_2>R>R_1)

下面写出四个边界条件

\varphi_1|_{R-> +\infty}=0,\varphi_2|_{R=R_1}=0

\varphi_2|_{r=R_2}=\varphi_1|_{r=R_3}

导体表面带电量为Q

因为导体球壳表面电量的计算公式是-\varepsilon \frac{\partial \varphi}{\partial n}|_{S_i}=\sigma

我们不难得到

-\int_S\frac{\partial \varphi_1}{\partial r}dS+\int_S\frac{\partial \varphi_2}{\partial r}dS=\frac{Q}{\varepsilon_0}

b (4 \pi )-d (4 \pi )=\frac{Q}{\varepsilon_0}

我们可以得到

a=0

c+\frac{d}{R_1}=0

c+\frac{d}{R_2}=a+\frac{b}{R_3}=>c+\frac{d}{R_2}=\frac{b}{R_3}=>d(\frac{1}{R_2}-\frac{1}{R_1})=\frac{b}{R_3}=>b=\frac{\frac{1}{R_3}}{\frac{1}{R_2}-\frac{1}{R_1}}d

b-d=\frac{Q}{4 \pi \varepsilon_0}=>\frac{\frac{1}{R_3}}{\frac{1}{R_2}-\frac{1}{R_1}}d -d=\frac{Q}{4 \pi \varepsilon_0} =>\frac{\frac{1}{R_3}-\frac{1}{R_2}+\frac{1}{R_1}}{\frac{1}{R_2}-\frac{1}{R_1}} d=\frac{Q}{ 4 \pi \varepsilon_0} \\ =>d=\frac{\frac{1}{R_2}-\frac{1}{R_1}}{\frac{1}{R_3}-\frac{1}{R_2}+\frac{1}{R_1}} \frac{Q}{4 \pi \varepsilon_0}

我们可以解得

a=0 \\ b= \frac{\frac{1}{R_2}-\frac{1}{R_1}}{\frac{1}{R_3}-\frac{1}{R_2}+\frac{1}{R_1}} \frac{Q}{4 \pi \varepsilon_0} \\ c=\frac{\frac{1}{R_3}}{-R_1 (\frac{1}{R_3}-\frac{1}{R_2}+\frac{1}{R_1})} \frac{Q}{4 \pi \varepsilon_0}\\ d=\frac{\frac{1}{R_3}}{\frac{1}{R_3}-\frac{1}{R_2}+\frac{1}{R_1}} \frac{Q}{4 \pi \varepsilon_0}


电容率为\varepsilon的介质球置于均匀外电场E_0中,求电势

 

\varphi_1表示球外电势,\varphi_2表示球内电势

\varphi_1 =\sum_{n}(a_n R^{n} +\frac{b_n}{R^{n+1}})P_n cos(\theta)

\varphi_1 =\sum_{n}(c_n R^{n} +\frac{d_n}{R^{n+1}})P_n cos(\theta)

(1)在无穷远处

\varphi_1 -> -E_0 R cos(\theta)=-E_0 rP_1 cos(\theta)

因而

a_1=-E_0,a_n =0 (n \neq 1)

(2) 在R=0处,\varphi_2应该为有限值,因此

d_n=0

(3)在介质球面上(R=R_0)

\varphi_1=\varphi_2,\varepsilon_0\frac{\partial \varphi_1}{\partial R}=\varepsilon \frac{\partial \varphi_2}{\partial R}

比较系数,即可求得方程的解


总结一下可以发现

泊松方程和拉普拉斯方程的核心都在于如何寻找边界条件

在这些题目中,利用球坐标系的公式进行展开,利用对称性

牺牲掉部分精度,来换取一个比较容易的求解

是一个很值得参考的方法

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值