拉普拉斯方程

1623 篇文章 22 订阅
1277 篇文章 12 订阅
拉普拉斯方程(Laplace's equation),又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以 势函数的形式描写了 电场引力场和流场等物理对象(一般统称为“ 保守场”或“有势场”)的性质。 [1]  
中文名
拉普拉斯方程
外文名
Laplace's equation
别    称
调和方程
提出者
拉普拉斯
涉及领域
电磁学、天文学、流体力学

基本概述编辑

拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用 R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△P= P1- P2,其数值与液面 曲率大小有关,可表示为:
   
,式中γ是 液体表面张力。该公式成为拉普拉斯方程。

在数理方程中

拉普拉斯方程为:
   
,其中 
 
为拉普拉斯算子,此处的拉普拉斯方程为二阶 偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量 xyz二阶可微的实函数φ :
其中 Δ 称为 拉普拉斯算子.
拉普拉斯方程的解称为 调和函数
如果等号右边是一个给定的函数 f( x, y, z),即:
则该方程称为 泊松方程。 拉普拉斯方程和泊松方程是最简单的 椭圆型偏微分方程。偏 微分算子或 Δ(可以在任意维空间中定义这样的算子)称为 拉普拉斯算子,英文是 Laplace operator或简称作 Laplacian

狄利克雷问题

拉普拉斯方程的狄利克雷问题可归结为求解在区域 D内定义的函数φ,使得在 D的边界上等于某给定的函数。为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。

诺伊曼边界条件

拉普拉斯方程的诺伊曼边界条件不直接给出区域 D边界处的温度函数φ本身,而是φ沿 D的边界法向的 导数。从物理的角度看,这种边界条件给出的是矢量场的势分布在区域边界处的已知效果(对热传导问题而言,这种效果便是边界 热流密度)。

方程的解

称为 调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意 线性微分方程),这两个函数之和(或任意形式的 线性组合)同样满足前述方程。这种非常有用的性质称为 叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 [2]  

二维方程编辑

解析函数

两个自变量的拉普拉斯方程具有以下形式:
解析函数的实部和虚部均满足拉普拉斯方程。换言之,若 z= x+ iy,并且
那么 f( z)是解析函数的 充要条件是它满足下列 柯西-黎曼方程
上述方程继续求导就得到
所以 u满足拉普拉斯方程。类似的计算可推得 v同样满足拉普拉斯方程。
反之,给定一个由解析函数(或至少在某点及其邻域内解析的函数) f( z)的实部确定的调和函数,若写成下列形式:
则等式
成立就可使得柯西-黎曼方程得到满足。 上述关系无法确定ψ,只能得到它的微增量表达式:
φ满足拉普拉斯方程意味着ψ满足可积条件:
所以可以通过一个线积分来定义ψ。可积条件和 斯托克斯定理的满足说明 线积分的结果与积分经过的具体路径无关,仅由起点和终点决定。于是,我们便通过 复变函数方法得到了φ和ψ这一对拉普拉斯方程的解。这样的解称为一对 共轭调和函数。这种构造解的方法只在局部(复变函数 f( z))的解析域内)有效,或者说,构造函数的积分路径不能围绕有 f( z)的 奇点。譬如,在 极坐标平面( r, θ)上定义函数
那么相应的解析函数为
在这里需要注意的是,极角 θ仅在不包含原点的区域内才是单值的。
拉普拉斯方程与解析函数之间的紧密联系说明拉普拉斯方程的任何解都无穷阶可导(这是解析函数的一个性质),因此可以展开成 幂级数形式,至少在不包含奇点的圆域内是如此。这与 波动方程的解形成鲜明对照,后者包含 任意函数,其中一些的可微分阶数是很小的。
幂级数和傅里叶级数之间存在着密切的关系。如果我们将函数 f在复平面上以原点为中心, R为半径的圆域内展开成幂级数,即
将每一项系数适当地分离出实部和虚部
那么
这便是 f的傅里叶级数。

流场中的应用

uv分别为满足定常、不可压缩和无旋条件的流体速度场的 xy方向分量(这里仅考虑二维流场),那么不可压缩条件为:
无旋条件为:
若定义一个 标量函数ψ,使其微分满足:
那么不可压缩条件便是上述微分式的可积条件。积分的结果函数ψ称为 流函数,因为它在同一条 流线上各点的值是相同的。ψ的一阶偏导为:
无旋条件即令 ψ 满足拉普拉斯方程。ψ的共轭调和函数称为 速度势。 柯西-黎曼方程要求
所以每一个解析函数都对应着平面内的一个定常不可压缩无旋流场。解析函数的实部为速度 势函数虚部为流函数。

电磁学中应用

二维拉普拉斯方程可以用有限差分法进行近似计算。首先把求解的区域划分成网格,把求解区域内连续的场分布用求网格节点上的离散的数值解代替。
根据 麦克斯韦方程组,二维空间中不随时间变化的电场( u, v)满足:
其中ρ为电荷密度。第一个 麦克斯韦方程便是下列微分式的可积条件:
所以可以构造电势函数φ使其满足
第二个麦克斯韦方程即:
这是一个 泊松方程[3]  

三维方程编辑

基本解

泊松方程或拉普拉斯方程一般是三维的偏微分方程,只有带电体的场呈“球、柱”形对称时,三维方程才退化为低维的微分方程。通过分离变量法可以得到方程的级数解。
拉普拉斯方程的基本解满足
其中的三维δ函数代表位于的一个点源。 由 基本解的定义,若对 u作用拉普拉斯算子,再把结果在包含点源的任意体积内积分,那么
由于坐标轴旋转不改变拉普拉斯方程的形式,所以基本解必然包含在那些仅与到点源距离 r相关的解中。如果我们选取包含点源、半径为 a的球形域作为积分域,那么根据高斯散度定理
求得在以点源为中心,半径为 r的球面上有
所以
经过类似的推导同样可求得二维形式的解

格林函数

格林函数是一种不但满足前述基本解的定义,而且在体积域 V的边界 S上还满足一定的边界条件的基本解。譬如,可以满足
现设 u为在 V内满足泊松方程的任意解:
u在边界 S上取值为 g,那么我们可以应用 格林公式(是高斯散度定理的一个推论),得到
unGn分别代表两个函数在边界 S上的法向导数。考虑到 uG满足的条件,可将上式 化简
所以格林函数描述了量 fg对( x', y', z')点函数值的影响。格林函数在半径为 a的球面内的点上得值可以通过 镜像法求得(Sommerfeld, 1949):距球心ρ的源点 P的通过球面的“反射镜像” P'距球心
需要注意的是,如果 P在球内,那么 P'将在球外。于是可得格林函数为
式中 R表示距源点 P的距离, R'表示距镜像点 P'的距离。从格林函数上面的表示式可以推出 泊松积分公式。设ρ、θ和φ为源点 P的三个球坐标分量。此处θ按照物理学界的通用标准定义为坐标矢径与竖直轴( z轴)的夹角(与欧洲习惯相同,与美国习惯不同)。于是球面内拉普拉斯 方程的解为:

式中

这个公式的一个显见的结论是:若 u是调和函数,那么 u在球心处的取值为其在球面上取值的平均。于是我们可以立即得出以下结论:任意一个调和函数(只要不是 常函数)的最大值必然不会在其 定义域的内部点取得。

人物介绍编辑

拉普拉斯,1749年3月23日生于法国西北部 卡尔瓦多斯的博蒙昂诺日,曾任巴黎军事学院数学教授。1795年任巴黎综合工科学校教授,后又在高等师范学校任教授。1799年他还担任过法国经度局局长,并在拿破仑政府中任过6个星期的内政部长。1816年被选为 法兰西学院院士,1817年任该院院长。1827年3月5日卒于巴黎。拉普拉斯在研究天体问题的过程中,创造和发展了许多数学的方法,以他的名字命名的 拉普拉斯变换拉普拉斯定理和拉普拉斯方程,在科学技术的各个领域有着广泛的应用。
拉普拉斯曾任拿破仑的老师,所以和 拿破仑结下不解之缘。拉普拉斯在数学上是个大师,在政治上是个小人物、墙头草,总是效忠于得势的一边,被人看不起,拿破仑曾讥笑他把 无穷小量的精神带到内阁里。在席卷法国的政治变动中,包括拿破仑的兴起和衰落,没有显著地打断他的工作。尽管他是个曾染指政治的人,但他的威望以及他将数学应用于军事问题的才能保护了他,同时也归功于他显示出的一种并不值得佩服的在政治态度方面见风使舵的能力。 [4]  
  • 9
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是一个完整的Python程序,用于解决这个问题: ```python import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # 设置计算参数 L = 1.0 # 平行板电容器的长度 W = 1.0 # 平行板电容器的宽度 H = 0.2 # 平行板电容器的厚度 h = 0.01 # 网格步长 N = int(L/h) # 网格数 d = 0.01 # 计算步长 epsilon_r = 1 # 相对介电常数 epsilon_0 = 8.854e-12 # 真空介电常数 # 初始化电势和电荷密度 U = np.zeros((N,N,N)) rho = np.zeros((N,N,N)) # 设置边界条件,上下两个平行板的电势为100V和-100V U[0,:,:] = 100 U[-1,:,:] = -100 # 迭代求解拉普拉斯方程 for k in range(1000): U_old = U.copy() # 保存上一步的电势值 for i in range(1,N-1): for j in range(1,N-1): for l in range(1,N-1): if l*d < H/2 or l*d > (N-1)*d-H/2: # 平行板的厚度至少为2d U[i,j,l] = 0 else: U[i,j,l] = (U_old[i-1,j,l] + U_old[i+1,j,l] + U_old[i,j-1,l] + U_old[i,j+1,l] + U_old[i,j,l-1] + U_old[i,j,l+1]) / 6 # 判断是否收敛 diff = np.abs(U - U_old) if np.max(diff) < 1e-6: break # 计算电荷密度 for i in range(1,N-1): for j in range(1,N-1): for l in range(1,N-1): if l*d < H/2 or l*d > (N-1)*d-H/2: rho[i,j,l] = 0 else: rho[i,j,l] = -epsilon_0/epsilon_r * (U[i-1,j,l] + U[i+1,j,l] + U[i,j-1,l] + U[i,j+1,l] + U[i,j,l-1] + U[i,j,l+1] - 6*U[i,j,l]) / d**2 # 绘制电势分布的三维图 x, y, z = np.meshgrid(np.linspace(0, L, N), np.linspace(0, W, N), np.linspace(0, H, N)) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(x, y, z, cmap='jet', rstride=1, cstride=1, alpha=0.8) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') plt.show() # 绘制电荷密度分布的三维图 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(x, y, z, cmap='jet', rstride=1, cstride=1, facecolors=plt.cm.jet(rho/rho.max()), alpha=0.8) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') plt.show() ``` 需要注意的是,由于本程序是一种数值计算方法,因此求解结果可能会受到计算精度、迭代次数等因素的影响,因此需要根据具体情况进行调整,以达到较为准确的计算结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值