-
中文名
- 拉普拉斯方程 外文名
- Laplace's equation
-
别 称
- 调和方程 提出者
- 拉普拉斯 涉及领域
- 电磁学、天文学、流体力学
目录
基本概述编辑
拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用 R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△P= P1- P2,其数值与液面
曲率大小有关,可表示为:
,式中γ是
液体表面张力。该公式成为拉普拉斯方程。

在数理方程中
其中 Δ 称为
拉普拉斯算子.
拉普拉斯方程的解称为
调和函数。
如果等号右边是一个给定的函数
f(
x,
y,
z),即:
则该方程称为
泊松方程。 拉普拉斯方程和泊松方程是最简单的
椭圆型偏微分方程。偏
微分算子或 Δ(可以在任意维空间中定义这样的算子)称为
拉普拉斯算子,英文是
Laplace operator或简称作
Laplacian。
狄利克雷问题
拉普拉斯方程的狄利克雷问题可归结为求解在区域
D内定义的函数φ,使得在
D的边界上等于某给定的函数。为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。
诺伊曼边界条件
拉普拉斯方程的诺伊曼边界条件不直接给出区域
D边界处的温度函数φ本身,而是φ沿
D的边界法向的
导数。从物理的角度看,这种边界条件给出的是矢量场的势分布在区域边界处的已知效果(对热传导问题而言,这种效果便是边界
热流密度)。
方程的解
称为
调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意
线性微分方程),这两个函数之和(或任意形式的
线性组合)同样满足前述方程。这种非常有用的性质称为
叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。
[2]
二维方程编辑
解析函数
两个自变量的拉普拉斯方程具有以下形式:
解析函数的实部和虚部均满足拉普拉斯方程。换言之,若
z=
x+
iy,并且
那么
f(
z)是解析函数的
充要条件是它满足下列
柯西-黎曼方程:
上述方程继续求导就得到
所以
u满足拉普拉斯方程。类似的计算可推得
v同样满足拉普拉斯方程。
反之,给定一个由解析函数(或至少在某点及其邻域内解析的函数)
f(
z)的实部确定的调和函数,若写成下列形式:
则等式
成立就可使得柯西-黎曼方程得到满足。 上述关系无法确定ψ,只能得到它的微增量表达式:
φ满足拉普拉斯方程意味着ψ满足可积条件:
所以可以通过一个线积分来定义ψ。可积条件和
斯托克斯定理的满足说明
线积分的结果与积分经过的具体路径无关,仅由起点和终点决定。于是,我们便通过
复变函数方法得到了φ和ψ这一对拉普拉斯方程的解。这样的解称为一对
共轭调和函数。这种构造解的方法只在局部(复变函数
f(
z))的解析域内)有效,或者说,构造函数的积分路径不能围绕有
f(
z)的
奇点。譬如,在
极坐标平面(
r,
θ)上定义函数
那么相应的解析函数为
在这里需要注意的是,极角
θ仅在不包含原点的区域内才是单值的。
拉普拉斯方程与解析函数之间的紧密联系说明拉普拉斯方程的任何解都无穷阶可导(这是解析函数的一个性质),因此可以展开成
幂级数形式,至少在不包含奇点的圆域内是如此。这与
波动方程的解形成鲜明对照,后者包含
任意函数,其中一些的可微分阶数是很小的。
幂级数和傅里叶级数之间存在着密切的关系。如果我们将函数
f在复平面上以原点为中心,
R为半径的圆域内展开成幂级数,即
将每一项系数适当地分离出实部和虚部
那么
这便是
f的傅里叶级数。
流场中的应用
设
u、
v分别为满足定常、不可压缩和无旋条件的流体速度场的
x和
y方向分量(这里仅考虑二维流场),那么不可压缩条件为:
无旋条件为:
若定义一个
标量函数ψ,使其微分满足:
无旋条件即令 ψ 满足拉普拉斯方程。ψ的共轭调和函数称为
速度势。 柯西-黎曼方程要求
电磁学中应用
二维拉普拉斯方程可以用有限差分法进行近似计算。首先把求解的区域划分成网格,把求解区域内连续的场分布用求网格节点上的离散的数值解代替。
根据
麦克斯韦方程组,二维空间中不随时间变化的电场(
u,
v)满足:
和
其中ρ为电荷密度。第一个
麦克斯韦方程便是下列微分式的可积条件:
所以可以构造电势函数φ使其满足
第二个麦克斯韦方程即:
三维方程编辑
基本解
泊松方程或拉普拉斯方程一般是三维的偏微分方程,只有带电体的场呈“球、柱”形对称时,三维方程才退化为低维的微分方程。通过分离变量法可以得到方程的级数解。
拉普拉斯方程的基本解满足
其中的三维δ函数代表位于的一个点源。 由
基本解的定义,若对
u作用拉普拉斯算子,再把结果在包含点源的任意体积内积分,那么
由于坐标轴旋转不改变拉普拉斯方程的形式,所以基本解必然包含在那些仅与到点源距离
r相关的解中。如果我们选取包含点源、半径为
a的球形域作为积分域,那么根据高斯散度定理
求得在以点源为中心,半径为
r的球面上有
所以
经过类似的推导同样可求得二维形式的解
格林函数
格林函数是一种不但满足前述基本解的定义,而且在体积域
V的边界
S上还满足一定的边界条件的基本解。譬如,可以满足
现设
u为在
V内满足泊松方程的任意解:
且
u在边界
S上取值为
g,那么我们可以应用
格林公式(是高斯散度定理的一个推论),得到
un和
Gn分别代表两个函数在边界
S上的法向导数。考虑到
u和
G满足的条件,可将上式
化简为
所以格林函数描述了量
f和
g对(
x',
y',
z')点函数值的影响。格林函数在半径为
a的球面内的点上得值可以通过
镜像法求得(Sommerfeld, 1949):距球心ρ的源点
P的通过球面的“反射镜像”
P'距球心
需要注意的是,如果
P在球内,那么
P'将在球外。于是可得格林函数为
式中
R表示距源点
P的距离,
R'表示距镜像点
P'的距离。从格林函数上面的表示式可以推出
泊松积分公式。设ρ、θ和φ为源点
P的三个球坐标分量。此处θ按照物理学界的通用标准定义为坐标矢径与竖直轴(
z轴)的夹角(与欧洲习惯相同,与美国习惯不同)。于是球面内拉普拉斯
方程的解为:
式中
这个公式的一个显见的结论是:若
u是调和函数,那么
u在球心处的取值为其在球面上取值的平均。于是我们可以立即得出以下结论:任意一个调和函数(只要不是
常函数)的最大值必然不会在其
定义域的内部点取得。