基于深度学习的图异常检测技术综述——阅读

本文综述了图异常检测在大数据和复杂网络中的应用,介绍了基于深度学习的方法,如图神经网络、图表示学习和异常检测模型,如GCN、SDNE、深度自编码等,探讨了静态图和动态图的异常定义,以及评价指标。特别关注了无监督和半监督的深度图异常检测策略及其在电信欺诈、网络入侵等领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址

图异常检测:在一个大图或海量图数据库中寻找包含“陌生”或者“不寻常”模式的结构(包括节点、边或者子图)。例如因特网中的恶意攻击、社交网中的突发事件检测、电子商务中的水军发现等。

图的异常检测不仅将复杂的数据加以直观的呈现,也将数据中隐含的相关性融入到异常检测过程中。

工作:

  • 基于静态图
  • 基于动态图

通过神经网络对图进行嵌入不仅可以很好的保留信息,还可以很好的处理节点或边的属性,同时保留结构信息。
基于深度学习的图异常检测方法通常使用图的嵌入表示方法将图表示为隐空间中的向量,然后使用该向量重构图从而剔除异常信息的影响,最后通过重构误差进行异常检测。

1、图上的异常定义

1.1、静态图上的异常定义

静态图上的异常通常是指图中很少的或者与观察到的模式有明显偏差的节点、边或子图。

  • 静态图上的结构异常
    • 节点与节点之间
    • 节点与子图之间
    • 子图与子图之间
  • 静态图上的属性异常
    给定一个图G和其中的节点v,v在结构上属于一个社区,如果v和大量属于其他社区的节点的属性相似,那么这种异常可以定义为属性上的异常。
  • 静态图上结构和属性的联合异常

1.2、动态图上的异常定义

对于一个随时间变化的动态图,图中可能会有新的节点或边的增加和删除,从而引起图结构和属性的动态变化,可能会出现异常.动态图上的异常通常是导致变化或事件发生的top k个节点、边或子图。

  • 基于结构变化的异常
    • 生长的社区
    • 收缩的社区
    • 合并的社区
    • 划分社区
    • 新生的社区
    • 消失的社区
      以上六种如下图所示:
      在这里插入图片描述
  • 基于属性变化的异常
  • 基于结构和属性变化的异常

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值